Skip to main content
Log in

Involvement of a cysteine protease in the secretion process of human xylosyltransferase I

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Xylosylation of core proteins takes place in the Golgi-apparatus as the transfer of xylose from UDP-xylose to specific serine residues in proteoglycan core proteins. This initial and rate-limiting step in glycosaminoglycan biosynthesis is catalyzed by human xylosyltransferase I (XT-I). XT-I is proteolytically cleaved from the Golgi surface and shed in its active form into the extracellular space. The secreted, circulating glycosyltransferase represents a serum biomarker for various diseases with an altered proteoglycan metabolism, whereas a physiological function of secreted XT-I is still unknown. To shed light on the secretion process of XT-I and on its biological function, the cleavage site was examined and the group of proteases involved in the cleavage was identified in this study. The peptide mass fingerprint from partly purified secreted XT-I revealed the cleavage site to be localized in the aminoterminal 231 amino acids. The addition of a cysteine protease inhibitor cocktail to cells recombinantly expressing XT-I led to a concentration-dependent shift of enzyme activity towards the cell lysates attended by consistent total intracellular and extracellular XT-I activities. In conclusion, our findings provide a first insight into the XT-I secretion process regulated by a cysteine protease and may contribute to understanding the biological and pathological role of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAA:

Abdominal aortic aneurysm

CRTL:

Control

EC:

Extracellular

IC:

Intracellular

XT:

Xylosyltransferase

XT-I:

Xylosyltransferase I

References

  1. Iozzo, R.V.: Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Kjellen, L., Lindahl, U.: Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443–475 (1991)

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz, N.B.: Regulation of chondroitin sulfate synthesis. Effect of beta-xylosides on synthesis of chondroitin sulfate proteoglycan, chondroitin sulfate chains, and core protein. J. Biol. Chem. 252, 6316–6321 (1977)

    CAS  PubMed  Google Scholar 

  4. Kearns, A.E., Campbell, S.C., Westley, J., Schwartz, N.B.: Initiation of chondroitin sulfate biosynthesis: a kinetic analysis of UDP-D-xylose: core protein beta-D-xylosyltransferase. Biochemistry (Mosc) 30, 7477–7483 (1991)

    Article  CAS  Google Scholar 

  5. Joziasse, D.H.: Mammalian glycosyltransferases: genomic organization and protein structure. Glycobiology 2, 271–277 (1992)

    Article  CAS  PubMed  Google Scholar 

  6. Field, M.C., Wainwright, L.J.: Molecular cloning of eukaryotic glycoprotein and glycolipid glycosyltransferases: a survey. Glycobiology 5, 463–472 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. Schön, S., Prante, C., Bahr, C., Kuhn, J., Kleesiek, K., Götting, C.: Cloning and recombinant expression of active full-length xylosyltransferase I (XT-I) and characterization of subcellular localization of XT-I and XT-II. J. Biol. Chem. 281, 14224–14231 (2006)

    Article  PubMed  Google Scholar 

  8. El-Battari, A., Prorok, M., Angata, K., Mathieu, S., Zerfaoui, M., Ong, E., Suzuki, M., Lombardo, D., Fukuda, M.: Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation. Glycobiology 13, 941–953 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Götting, C., Kuhn, J., Kleesiek, K.: Human xylosyltransferases in health and disease. Cell. Mol. Life Sci. 64, 1498–1517 (2007)

    Article  PubMed  Google Scholar 

  10. Pönighaus, C., Ambrosius, M., Carrera Casanova, J., Prante, C., Kuhn, J., Esko, J.D., Kleesiek, K., Götting, C.: Human xylosyltransferase II is involved in the biosynthesis of the uniform tetrasaccharide linkage region in chondroitin sulfate and heparan sulfate proteoglycans. J. Biol. Chem. 282, 5201–5206 (2007)

    Article  PubMed  Google Scholar 

  11. Kim, J.J., Conrad, H.E.: Secretion of chondroitin SO4 by monolayer cultures of chick embryo chondrocytes. J. Biol. Chem. 255, 1586–1597 (1980)

    CAS  PubMed  Google Scholar 

  12. Evangelisti, R., Becchetti, E., Baroni, T., Rossi, L., Arena, N., Valeno, V., Carinci, P., Locci, P.: Modulation of phenotypic expression of fibroblasts by alteration of the cytoskeleton. Cell Biochem. Funct. 13, 41–52 (1995)

    Article  CAS  PubMed  Google Scholar 

  13. Rennison, M.E., Handel, S.E., Wilde, C.J., Burgoyne, R.D.: Investigation of the role of microtubules in protein secretion from lactating mouse mammary epithelial cells. J. Cell Sci. 102(Pt 2), 239–247 (1992)

    CAS  PubMed  Google Scholar 

  14. Götting, C., Sollberg, S., Kuhn, J., Weilke, C., Huerkamp, C., Brinkmann, T., Krieg, T., Kleesiek, K.: Serum xylosyltransferase: a new biochemical marker of the sclerotic process in systemic sclerosis. J. Invest. Dermatol. 112, 919–924 (1999)

    Article  PubMed  Google Scholar 

  15. Götting, C., Kuhn, J., Sollberg, S., Huerkamp, C., Brinkmann, T., Krieg, T., Kleesiek, K.: Elevated serum xylosyltransferase activity correlates with a high level of hyaluronate in patients with systemic sclerosis. Acta Derm. Venereol. 80, 60–61 (2000)

    Article  PubMed  Google Scholar 

  16. Götting, C., Hendig, D., Adam, A., Schön, S., Schulz, V., Szliska, C., Kuhn, J., Kleesiek, K.: Elevated xylosyltransferase I activities in pseudoxanthoma elasticum (PXE) patients as a marker of stimulated proteoglycan biosynthesis. J. Mol. Med. 83, 984–992 (2005)

    Article  PubMed  Google Scholar 

  17. Götting, C., Kuhn, J., Kleesiek, K.: Serum xylosyltransferase activity in diabetes mellitus patients as a possible marker of reduced proteoglycan biosynthesis. Diabetes Care 31, 2018–2019 (2008)

    Article  PubMed  Google Scholar 

  18. Varki, A., Esko, J.D., Colley, K.J.: Cellular Organization of Glycosylation. In: Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., Etzler, M.E. (eds.) Essentials of Glycobiology. Cold Spring Harbor Laboratory, Cold Spring Harbor (2009)

    Google Scholar 

  19. Esko, J.D., Stewart, T.E., Taylor, W.H.: Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc. Natl Acad. Sci. USA 82, 3197–3201 (1985)

    Article  CAS  PubMed  Google Scholar 

  20. Brinkmann, T., Weilke, C., Kleesiek, K.: Recognition of acceptor proteins by UDP-D-xylose proteoglycan core protein beta-D-xylosyltransferase. J. Biol. Chem. 272, 11171–11175 (1997)

    Article  CAS  PubMed  Google Scholar 

  21. Weilke, C., Brinkmann, T., Kleesiek, K.: Determination of xylosyltransferase activity in serum with recombinant human bikunin as acceptor. Clin. Chem. 43, 45–51 (1997)

    CAS  PubMed  Google Scholar 

  22. Götting, C., Kuhn, J., Brinkmann, T., Kleesiek, K.: Xylosylation of alternatively spliced isoforms of Alzheimer APP by xylosyltransferase. J. Protein Chem. 17, 295–302 (1998)

    Article  PubMed  Google Scholar 

  23. Lutgens, S.P., Cleutjens, K.B., Daemen, M.J., Heeneman, S.: Cathepsin cysteine proteases in cardiovascular disease. FASEB J. 21, 3029–3041 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. Dickinson, D.P.: Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. Crit. Rev. Oral Biol. Med. 13, 238–275 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Ascenzi, P., Salvati, L., Bolognesi, M., Colasanti, M., Polticelli, F., Venturini, G.: Inhibition of cysteine protease activity by NO-donors. Curr. Protein Pept. Sci. 2, 137–153 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Turk, B., Turk, V., Turk, D.: Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol. Chem. 378, 141–150 (1997)

    CAS  PubMed  Google Scholar 

  27. Chapman, H.A., Riese, R.J., Shi, G.P.: Emerging roles for cysteine proteases in human biology. Annu. Rev. Physiol. 59, 63–88 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. Turk, B., Turk, D., Turk, V.: Lysosomal cysteine proteases: more than scavengers. Biochim. Biophys. Acta 1477, 98–111 (2000)

    CAS  PubMed  Google Scholar 

  29. Lützner, N., Kalbacher, H.: Quantifying cathepsin S activity in antigen presenting cells using a novel specific substrate. J. Biol. Chem. 283, 36185–36194 (2008)

    Article  PubMed  Google Scholar 

  30. Choe, Y., Leonetti, F., Greenbaum, D.C., Lecaille, F., Bogyo, M., Brömme, D., Ellman, J.A., Craik, C.S.: Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281, 12824–12832 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Xiaoping Xu and Gudrun Bokermann for their excellent technical assistance. In addition, we thank Sarah L. Kirkby for her linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Götting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pönighaus, C., Kuhn, J., Kleesiek, K. et al. Involvement of a cysteine protease in the secretion process of human xylosyltransferase I. Glycoconj J 27, 359–366 (2010). https://doi.org/10.1007/s10719-010-9283-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-010-9283-4

Keywords

Navigation