Skip to main content
Log in

Elevated xylosyltransferase I activities in pseudoxanthoma elasticum (PXE) patients as a marker of stimulated proteoglycan biosynthesis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Pseudoxanthoma elasticum (PXE) is a hereditary disorder of the connective tissue characterized by extracellular matrix alterations with elastin fragmentation and excessive proteoglycan deposition. Xylosyltransferase I (XT-I, E.C. 2.4.2.26) is the initial enzyme in the biosynthesis of the glycosaminoglycan chains in proteoglycans and has been shown to be a marker of tissue remodeling processes. Here, we investigated for the first time serum XT-I activities in a large cohort of German PXE patients and their unaffected relatives. XT-I activities were measured in serum samples from 113 Caucasian patients with PXE and 103 unaffected first-degree family members. The occurrence of the frequent ABCC6 gene mutation c.3421C>T (R1141X) and the hypertension-associated genetic variants T174M and M235T in the angiotensinogen (AGT) gene were determined. Serum XT-I activities in male and female PXE patients were significantly increased compared to unaffected family members (male patients, mean value 0.96 mU/l, SD 0.37; male relatives, 0.78 mU/l, SD 0.29; female patients, 0.91 mU/l, SD 0.31; female relatives, 0.76 mU/l, SD 0.34; p<0.05). The mean XT-I activities in PXE patients with hypertension were 24% higher than in patients without increased blood pressure (p<0.05). The AGT T174M and M235T frequencies were not different in hypertensive PXE patients, normotensive PXE patients, family members or blood donors. Our data show that the altered proteoglycan biosynthesis in PXE patients is closely related to an increased XT-I activity in blood. Serum XT-I, the novel fibrosis marker, may be useful for the assessment of extracellular matrix alterations and disease activity in PXE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGT:

Angiotensinogen

PXE:

Pseudoxanthoma elasticum

XT-I:

Xylosyltransferase I

References

  1. Neldner KH (1988) Pseudoxanthoma elasticum. Int J Dermatol 27:98–100

    PubMed  Google Scholar 

  2. Uitto J, Boyd CD, Lebwohl MG, Moshell AN, Rosenbloom J, Terry S (1998) International Centennial Meeting on Pseudoxanthoma Elasticum: progress in PXE research. J Invest Dermatol 110:840–842

    Article  PubMed  Google Scholar 

  3. Lebwohl M, Halperin J, Phelps RG (1993) Brief report: occult pseudoxanthoma elasticum in patients with premature cardiovascular disease. N Engl J Med 329:1237–1239

    Article  PubMed  Google Scholar 

  4. Le Saux O, Urban Z, Tschuch C, Csiszar K, Bacchelli B, Quaglino D, Pasquali-Ronchetti I, Pope FM, Richards A, Terry S, Bercovitch L, de Paepe A, Boyd CD (2000) Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat Genet 25:223–227

    Article  PubMed  Google Scholar 

  5. Ringpfeil F, Lebwohl MG, Christiano AM, Uitto J (2000) Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A 97:6001–6006

    Article  PubMed  Google Scholar 

  6. Struk B, Cai L, Zach S, Ji W, Chung J, Lumsden A, Stumm M, Huber M, Schaen L, Kim CA, Goldsmith LA, Viljoen D, Figuera LE, Fuchs W, Munier F, Ramesar R, Hohl D, Richards R, Neldner KH, Lindpaintner K (2000) Mutations of the gene encoding the transmembrane transporter protein ABC-C6 cause pseudoxanthoma elasticum. J Mol Med 78:282–286

    Article  PubMed  Google Scholar 

  7. Götting C, Schulz V, Hendig D, Grundt A, Dreier J, Szliska C, Brinkmann T, Kleesiek K (2004) Assessment of a rapid-cycle PCR assay for the identification of the recurrent c.3421C>T mutation in the ABCC6 gene in pseudoxanthoma elasticum patients. Lab Invest 84:122–130

    Article  PubMed  Google Scholar 

  8. Hendig D, Schulz V, Eichgrün J, Szliska C, Götting C, Kleesiek K (2005) New ABCC6 gene mutations in German pseudoxanthoma elasticum patients. J Mol Med 83:140–147

    Article  PubMed  Google Scholar 

  9. Kool M, van der Linden M, de Haas M, Baas F, Borst P (1999) Expression of human MRP6, a homologue of the multidrug resistance protein gene MRP1, in tissues and cancer cells. Cancer Res 59:175–182

    PubMed  Google Scholar 

  10. Belinsky MG, Chen ZS, Shchaveleva I, Zeng H, Kruh GD (2002) Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res 62:6172–6177

    PubMed  Google Scholar 

  11. Ilias A, Urban Z, Seidl TL, Le Saux O, Sinko E, Boyd CD, Sarkadi B, Varadi A (2002) Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6). J Biol Chem 277:16860–16867

    Article  PubMed  Google Scholar 

  12. Pasquali-Ronchetti I, Volpin D, Baccarani-Contri M, Castellani I, Peserico A (1981) Pseudoxanthoma elasticum. Biochemical and ultrastructural studies. Dermatologica 163:307–325

    PubMed  Google Scholar 

  13. Pasquali-Ronchetti I, Baccarani-Contri M, Pincelli C, Bertazzoni GM (1986) Effect of selective enzymatic digestions on skin biopsies from pseudoxanthoma elasticum: an ultrastructural study. Arch Dermatol Res 278:386–392

    Article  PubMed  Google Scholar 

  14. Pasquali-Ronchetti I, Bressan GM, Fornieri C, Baccarani-Contri M, Castellani I, Volpin D (1984) Elastin fiber-associated glycosaminoglycans in beta-aminopropionitrile-induced lathyrism. Exp Mol Pathol 40:235–245

    Article  PubMed  Google Scholar 

  15. Passi A, Albertini R, Baccarani-Contri M, de Luca G, de Paepe A, Pallavicini G, Pasquali-Ronchetti I, Tiozzo R (1996) Proteoglycan alterations in skin fibroblast cultures from patients affected with pseudoxanthoma elasticum. Cell Biochem Funct 14:111–120

    PubMed  Google Scholar 

  16. Tiozzo-Costa R, Baccarani-Contri M, Cingi MR, Pasquali-Ronchetti I, Salvini R, Rindi S, De Luca G (1988) Pseudoxanthoma elasticum (PXE): ultrastructural and biochemical study on proteoglycan and proteoglycan-associated material produced by skin fibroblasts in vitro. Coll Relat Res 8:49–64

    Google Scholar 

  17. Maccari F, Gheduzzi D, Volpi N (2003) Anomalous structure of urinary glycosaminoglycans in patients with pseudoxanthoma elasticum. Clin Chem 49:380–388

    Article  PubMed  Google Scholar 

  18. Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    Article  PubMed  Google Scholar 

  19. Schwartz NB (1977) Regulation of chondroitin sulfate synthesis. Effect of beta-xylosides on synthesis of chondroitin sulfate proteoglycan, chondroitin sulfate chains, and core protein. J Biol Chem 252:6316–6321

    PubMed  Google Scholar 

  20. Kearns AE, Campbell SC, Westley J, Schwartz NB (1991) Initiation of chondroitin sulfate biosynthesis: a kinetic analysis of UDP-d-xylose: core protein beta-d-xylosyltransferase. Biochemistry 30:7477–7483

    Article  PubMed  Google Scholar 

  21. Hoffmann HP, Schwartz NB, Roden L, Prockop DJ (1984) Location of xylosyltransferase in the cisternae of the rough endoplasmic reticulum of embryonic cartilage cells. Connect Tissue Res 12:151–163

    PubMed  Google Scholar 

  22. Götting C, Sollberg S, Kuhn J, Weilke C, Huerkamp C, Brinkmann T, Krieg T, Kleesiek K (1999) Serum xylosyltransferase: a new biochemical marker of the sclerotic process in systemic sclerosis. J Invest Dermatol 112:919–924

    Article  PubMed  Google Scholar 

  23. Weilke C, Brinkmann T, Kleesiek K (1997) Determination of xylosyltransferase activity in serum with recombinant human bikunin as acceptor. Clin Chem 43:45–51

    PubMed  Google Scholar 

  24. Götting C, Kuhn J, Sollberg S, Huerkamp C, Brinkmann T, Krieg T, Kleesiek K (2000) Elevated serum xylosyltransferase activity correlates with a high level of hyaluronate in patients with systemic sclerosis. Acta Derm-Venereol 80:60–61

    Article  PubMed  Google Scholar 

  25. Götting C, Kuhn J, Tinneberg HR, Brinkmann T, Kleesiek K (2002) High xylosyltransferase activities in human follicular fluid and cultured granulosa-lutein cells. Mol Hum Reprod 8:1079–1086

    PubMed  Google Scholar 

  26. Lebwohl M, Neldner K, Pope FM, De Paepe A, Christiano AM, Boyd CD, Uitto J, McKusick VA (1994) Classification of pseudoxanthoma elasticum: report of a consensus conference. J Am Acad Dermatol 30:103–107

    PubMed  Google Scholar 

  27. Smith JG, Davidson EA, Taylor RW (1964) Cutaneous acid mucopolysaccharides in pseudoxanthoma elasticum. J Invest Dermatol 43:429–430

    PubMed  Google Scholar 

  28. Longas MO, Wisch P, Lebwohl MG, Fleischmajer R (1986) Glycosaminoglycans of skin and urine in pseudoxanthoma elasticum: evidence for chondroitin 6-sulfate alteration. Clin Chim Acta 155:227–236

    PubMed  Google Scholar 

  29. Walker ER, Frederickson RG, Mayes MD (1989) The mineralization of elastic fibers and alterations of extracellular matrix in pseudoxanthoma elasticum. Ultrastructure, immunocytochemistry, and x-ray analysis. Arch Dermatol 125:70–76

    PubMed  Google Scholar 

  30. Martinez-Hernandez A, Huffer WE (1974) Pseudoxanthoma elasticum: dermal polyanions and the mineralization of elastic fibers. Lab Invest 31:181–186

    PubMed  Google Scholar 

  31. Kornet L, Bergen AA, Hoeks AP, Cleutjens JP, Oostra RJ, Daemen MJ, van Soest S, Reneman RS (2004) In patients with pseudoxanthoma elasticum a thicker and more elastic carotid artery is associated with elastin fragmentation and proteoglycans accumulation. Ultrasound Med Biol 30:1041–1048

    PubMed  Google Scholar 

  32. Sakuraoka K, Tajima S, Nishikawa T, Seyama Y (1994) Biochemical analyses of macromolecular matrix components in patients with pseudoxanthoma elasticum. J Dermatol 21:98–101

    PubMed  Google Scholar 

  33. Baccarani-Contri M, Vincenzi D, Cicchetti F, Mori G, Pasquali-Ronchetti I (1994) Immunochemical identification of abnormal constituents in the dermis of pseudoxanthoma elasticum patients. Eur J Histochem 38:111–123

    PubMed  Google Scholar 

  34. Götting C, Kuhn J, Brinkmann T, Kleesiek K (2002) Xylosyltransferase activity in seminal plasma of infertile men. Clin Chim Acta 317:199–202

    PubMed  Google Scholar 

  35. Götting C, Kuhn J, Brinkmann T, Kleesiek K (1998) Xylosylation of alternatively spliced isoforms of Alzheimer APP by xylosyltransferase. J Protein Chem 17:295–302

    PubMed  Google Scholar 

  36. Götting C, Kuhn J, Zahn R, Brinkmann T, Kleesiek K (2000) Molecular cloning and expression of human UDP-d-Xylose: proteoglycan core protein beta-d-xylosyltransferase and its first isoform XT-II. J Mol Biol 304:517–528

    PubMed  Google Scholar 

  37. Müller S, Schöttler M, Schön S, Prante C, Brinkmann T, Kuhn J, Götting C, Kleesiek K (2005) Human xylosyltransferase I: functional and biochemical characterization of cysteine residues required for enzymic activity. Biochem J 386:227–236

    PubMed  Google Scholar 

  38. Götting C, Müller S, Schöttler M, Schön S, Prante C, Brinkmann T, Kuhn J, Kleesiek K (2004) Analysis of the DXD motifs in human xylosyltransferase I required for enzyme activity. J Biol Chem 279:42566–42573

    PubMed  Google Scholar 

  39. Kuhn J, Gotting C, Schnölzer M, Kempf T, Brinkmann T, Kleesiek K (2001) First isolation of human UDP-d-xylose: proteoglycan core protein beta-d-xylosyltransferase secreted from cultured JAR choriocarcinoma cells. J Biol Chem 276:4940–4947

    PubMed  Google Scholar 

  40. Shanahan CM, Cary NR, Salisbury JR, Proudfoot D, Weissberg PL, Edmonds ME (1999) Medial localization of mineralization-regulating proteins in association with Monckeberg’s sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 100:2168–2176

    PubMed  Google Scholar 

  41. Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM et al (1992) Molecular basis of human hypertension: role of angiotensinogen. Cell 71:169–180

    PubMed  Google Scholar 

  42. Caulfield M, Lavender P, Farrall M, Munroe P, Lawson M, Turner P, Clark AJ (1994) Linkage of the angiotensinogen gene to essential hypertension. N Engl J Med 330:1629–1633

    PubMed  Google Scholar 

  43. Hegele RA, Brunt JH, Connelly PW (1994) A polymorphism of the angiotensinogen gene associated with variation in blood pressure in a genetic isolate. Circulation 90:2207–2212

    PubMed  Google Scholar 

  44. Robinson M, Williams SM (2004) Role of two angiotensinogen polymorphisms in blood pressure variation. J Hum Hypertens 18:865–869

    PubMed  Google Scholar 

  45. Niu T, Xu X, Rogus J, Zhou Y, Chen C, Yang J, Fang Z, Schmitz C, Zhao J, Rao VS, Lindpaintner K (1998) Angiotensinogen gene and hypertension in Chinese. J Clin Invest 101:188–194

    PubMed  Google Scholar 

  46. Rotimi C, Morrison L, Cooper R, Oyejide C, Effiong E, Ladipo M, Osotemihen B, Ward R (1994) Angiotensinogen gene in human hypertension. Lack of an association of the 235T allele among African Americans. Hypertension 24:591–594

    PubMed  Google Scholar 

  47. Neldner KH (1988) Pseudoxanthoma elasticum. Clin Dermatol 6:1–159

    Article  Google Scholar 

  48. Eddy DD, Farber EM (1962) Pseudoxanthoma elasticum. Internal manifestations: a report of cases and a statistical review of the literature. Arch Dermatol 86:729–740

    Google Scholar 

  49. Risler N, Castro C, Cruzado M, Gonzalez S, Miatello R (2003) Proteoglycans production by aortic vascular smooth muscle cells from hypertensive rats. Biocell 27:189–196

    PubMed  Google Scholar 

  50. Tunon J, Ruiz-Ortega M, Egido J (2000) Regulation of matrix proteins and impact on vascular structure. Curr Hypertens Rep 2:106–113

    PubMed  Google Scholar 

  51. Castro CM, Cruzado MC, Miatello RM, Risler NR (1999) Proteoglycan production by vascular smooth muscle cells from resistance arteries of hypertensive rats. Hypertension 34:893–896

    PubMed  Google Scholar 

  52. Schöttler M, Müller S, Schön S, Prante C, Kuhn J, Kleesiek K, Götting C (2005) Serum xylosyltransferase I activity, the new biochemical fibrosis marker, is not affected by renal insufficiency. Clin Biochem 38:486–488

    PubMed  Google Scholar 

  53. Lee RT, Yamamoto C, Feng Y, Potter-Perigo S, Briggs WH, Landschulz KT, Turi TG, Thompson JF, Libby P, Wight TN (2001) Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J Biol Chem 276:13847–13851

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Marlen Ewald and Anja Reuße-Kaup for their excellent technical assistance and Sarah Kirkby for her linguistic advice. We are very grateful to all the PXE patients and their relatives, whose cooperation made this study possible. Furthermore, we would like to thank Peter Hof, chairman of the Selbsthilfe für PXE Erkrankte Deutschlands e.V., and the members of the clinical out-patients unit for PXE at the Bethesda hospital in Freudenberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Götting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götting, C., Hendig, D., Adam, A. et al. Elevated xylosyltransferase I activities in pseudoxanthoma elasticum (PXE) patients as a marker of stimulated proteoglycan biosynthesis. J Mol Med 83, 984–992 (2005). https://doi.org/10.1007/s00109-005-0693-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0693-x

Keywords

Navigation