Skip to main content
Log in

E-cadherin core fucosylation regulates nuclear β-catenin accumulation in lung cancer cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

E-cadherin expressed highly in 95C and lowly in 95D lung cancer cells which were from the same patient, but core-fucosylated E-cadherin highly expressed in 95D cells. Therefore, Fut8 and Fut8-RNAi constructs were transfected into 95C and 95D cells, respectively. In Fut8-transfectants, reduction of nuclear β-catenin was noted when E-cadherin was core-fucosylated, while accumulation of nuclear β-catenin was observed in Fut8-RNAi transfectants. In E-cadherin-negative MDA-MB-231 cells either Fut8 or Fut8-RNAi transfection couldn't affect nuclear β-catenin. However, cotransfection of E-cadherin with Fut8 caused nuclear β-catenin reduction. Furthermore, enhanced binding of E-cadheirn with β-catenin as well as α-catenin were observed in Fut8-transfectants, and reduction of tyrosine 654 phosphorylation on β-catenin and its transcriptional activity were also noted at the same time. Overall, the current results suggested that core-fucosylated E-cadherin regulated nuclear β-catenin accumulation in lung cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LCA:

lens culinaris agglutinin

Fut8:

α1,6-fucosyltransferase

siFut8:

Fut RNAi

IP:

Immunoprecipitation

TCF:

T-cell factor

95D cells:

giant cell carcinoma of lung with highly metastatic potential

95C cells:

giant cell carcinoma of lung with low metastatic potential

References

  1. Miyoshi, E., Noda, K., Yamaguchi, Y., et al.: The alpha1-6-fucosyltransferase gene and its biological significance. Biochim. Biophys. Acta. 1473, 9–20 (1999)

    PubMed  CAS  Google Scholar 

  2. Kitada, T., Miyoshi, E., Noda, K., et al.: The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of beta-catenin. J. Biol. Chem. 276, 475–480 (2001)

    Article  PubMed  CAS  Google Scholar 

  3. Wang, X., Inoue, S., Gu, J., et al.: Dysregulation of TGF-beta1 receptor activation leads to abnormal lung development and emphysema-like phenotype in core fucose-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 102, 15791–15796 (2005)

    Article  PubMed  CAS  Google Scholar 

  4. Wang, X.C., Gu, J.G., Ihara, H., et al.: Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J. Biol. Chem. 281, 2572–2577 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Wu, X.Z., Chen, Y.F.: Fucosylated oligosaccharides in migration of hepatoma cells. Prog. Biochem. Biophys. 9, 933–937 (2002)

    Google Scholar 

  6. Geng, F., Shi, B.Z., Yuan, Y.F., et al.: The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients: prognostic implications. Cell. Res. 14, 423–433 (2004)

    Article  PubMed  CAS  Google Scholar 

  7. Lu, Y.L., Huang, J.X., Li, X.H., et al.: Spontaneous metastasis of clonal cell subpopulation of human lung giant cell carcinoma after subcutaneous inoculation in mude mice. Chin. J. Oncol. 11, 5 (1989)

    Google Scholar 

  8. de la Taille, A., Rubin, M.A., Chen, M.W., et al.: Beta-catenin-related anomalies in apoptosis-resistant and hormone-refractory prostate cancer cells. Clin. Cancer. Res. 9, 1801–1807 (2003)

    PubMed  Google Scholar 

  9. Kim, S.H., Li, Z.G., Sacks, D.B.: E-cadherin-mediated cell–cell attachment activates Cdc42. J. Biol. Chem. 275, 36999–37005 (2000)

    Article  PubMed  CAS  Google Scholar 

  10. Li, Z.G., Kim, S.H., Higgins, J.M.G., et al.: IQGAP1 and calmodulin modulate E-cadherin function. J. Biol. Chem. 274, 37885–37892 (1999)

    Article  PubMed  CAS  Google Scholar 

  11. Hazan, R.B., Kang, L., Roe, S., et al.: Vinculin is associated with the E-cadherin adhesion complex. J. Biol. Chem. 272, 32448–32453 (1997)

    Article  PubMed  CAS  Google Scholar 

  12. Shtutman, M., Zhurinsky, J., Simcha, I., et al.: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. U. S. A. 96, 5522–5527 (1999)

    Article  PubMed  CAS  Google Scholar 

  13. He, T.C., Sparks, A.B., Rago, C., et al.: Identification of c-MYC as a target of the APC pathway. Sci. 281, 1509–1512 (1998)

    Article  CAS  Google Scholar 

  14. Miyoshi, E.: Core fucose and tumor marker. Seikagaku. 79, 790–794 (2007)

    PubMed  CAS  Google Scholar 

  15. Miyoshi, E., Moriwaki, K., Nakagawa, T.: Biological function of fucosylation in cancer biology The Journal of Biochemistry in press (2008)

  16. Zhu, W.J., Leber, B., Andrews, D.W.: Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. Embo J. 20, 5999–6007 (2001)

    Article  PubMed  CAS  Google Scholar 

  17. Liwosz, A., Lei, T., Kukuruzinska, M.A.: N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J. Biol. Chem. 281, 23138–23149 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Lee, S.H., Takahashi, M., Honke, K., et al.: Loss of core fucosylation of low-density lipoprotein receptor-related protein-1 impairs its function, leading to the upregulation of serum levels of insulin-like growth factor-binding protein 3 in Fut8(−/−) mice. J. Biochem. 139, 391–388 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. Isaji, T., Sato, Y., Zhao, Y.Y., et al.: N-glycosylation of the beta-propeller domain of the integrin alpha 5 subunit is essential for alpha 5 beta 1 heterodimerization, expression on the cell surface, and its biological function. J. Biol. Chem. 281, 33258–33267 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. Thévenod, F., Wolff, N.A., Bork, U., et al.: Cadmium (Cd2+) induces nuclear translocation of beta-catenin and increases expression of c-myc and Abcb1a in kidney proximal tubule (PT) cells. Biometals. 20, 807–820 (2007)

    Article  PubMed  Google Scholar 

  21. Miravet, S., Piedra, J., Castano, J., et al.: Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates beta-catenin-mediated transcription. Mol. Cell. Biol. 23, 7391–7402 (2003)

    Article  PubMed  CAS  Google Scholar 

  22. Giannini, A.L., Vivanco, M.D.M., Kypta, R.M.: alpha-Catenin inhibits beta-catenin signaling by preventing formation of a beta-catenin T-cell factor DNA complex. J. Biol. Chem. 275, 21883–21888 (2000)

    Article  PubMed  CAS  Google Scholar 

  23. Giannini, A., Mazor, M., Orme, M., et al.: Nuclear export of alpha-catenin: overlap between nuclear export signal sequences and the beta-catenin binding site. Exp. Cell. Res. 295, 150–160 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Natural Science Foundation of China (30070183, 30570414), Shanghai Leading Academic Discipline Project (B110), and Wenzhou Scientific and Technological Bureau (H2006023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, P., Shi, B., Geng, F. et al. E-cadherin core fucosylation regulates nuclear β-catenin accumulation in lung cancer cells. Glycoconj J 25, 843–850 (2008). https://doi.org/10.1007/s10719-008-9144-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9144-6

Keywords

Navigation