Skip to main content

Advertisement

Log in

Cadmium induces nuclear translocation of β-catenin and increases expression of c-myc and Abcb1a in kidney proximal tubule cells

  • Original paper
  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Cadmium (Cd2+) induces renal proximal tubular (PT) damage, including disruption of the E-cadherin/β-catenin complex of adherens junctions (AJs) and apoptosis. Yet, chronic Cd2+ exposure causes malignant transformation of renal cells. Previously, we have demonstrated that Cd2+-mediated up-regulation of the multidrug transporter Abcb1 causes apoptosis resistance in PT cells. We hypothesized that Cd2+ activates adaptive signaling mechanisms mediated by β-catenin to evade apoptosis and increase proliferation. Here we show that 50 µM Cd2+, which induces cell death via apoptosis and necrosis, also causes a decrease of the trans-epithelial resistance of confluent WKPT-0293 Cl.2 cells, a rat renal PT cell model, within 45 min of Cd2+ exposure, as measured by electric cell-substrate impedance sensing. Immunofluorescence microscopy demonstrates Cd2+-induced decrease of E-cadherin at AJs and redistribution of β-catenin from the E-cadherin/β-catenin complex of AJs to cytosol and nuclei after 3 h. Immunoblotting confirms Cd2+-induced decrease of E-cadherin expression and translocation of β-catenin to cytosol and nuclei of PT cells. RT-PCR shows Cd2+-induced increase of expression of c-myc and of the isoform Abcb1a at 3 h. The data prove for the first time that Cd2+ induces nuclear translocation of β-catenin in PT cells. We speculate that Cd2+ activates β-catenin/T-cell factor signaling to trans-activate proliferation and apoptosis resistance genes and promote carcinogenesis of PT cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouhamed M, Gburek J, Liu W et al. (2006) Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein-metal complexes. Am J Physiol Renal Physiol 290:F1525-F1533

    Article  PubMed  CAS  Google Scholar 

  • Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    Article  PubMed  CAS  Google Scholar 

  • Arndt S, Seebach J, Psathaki K, Galla HJ, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19:583–594

    Article  PubMed  CAS  Google Scholar 

  • Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144: 247–261

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308

    Article  PubMed  CAS  Google Scholar 

  • Chin KV, Tanaka S, Darlington G, Pastan I, Gottesman MM (1990) Heat shock and arsenite increase expression of the multidrug resistance (MDR1) gene in human renal carcinoma cells. J Biol Chem 265: 221–226

    PubMed  CAS  Google Scholar 

  • Conacci-Sorrell M, Zhurinsky J, Ben-Zeév A (2002) The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109:987–991

    Article  PubMed  CAS  Google Scholar 

  • Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  PubMed  CAS  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    CAS  Google Scholar 

  • Dudley RE, Gammal LM, Klaassen CD (1985) Cadmium-induced hepatic and renal injury in chronically exposed rats: likely role of hepatic cadmium-metallothionein in nephrotoxicity. Toxicol Appl Pharmacol 77:414–426

    Article  PubMed  CAS  Google Scholar 

  • Erfurt C, Roussa E, Thévenod F (2003) Apoptosis by Cd2+ or CdMT in proximal tubule cells: different uptake routes and permissive role of endo/lysosomal CdMT uptake. Am J Physiol Cell Physiol 285: C1367-C1376

    PubMed  CAS  Google Scholar 

  • Friberg L, Elinder CG, Kjellstrom T, Nordberg GF (1986) Cadmium and health: a toxicological and epidemiological approach. CRC Press, Boca Raton FL

    Google Scholar 

  • Gennari A, Cortese E, Boveri M, Casado J, Prieto P (2003) Sensitive endpoints for evaluating cadmium-induced acute toxicity in LLC-PK1 cells. Toxicology 183:211–220

    Article  PubMed  CAS  Google Scholar 

  • Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci USA 88:7896–7900

    Article  PubMed  CAS  Google Scholar 

  • Gottardi CJ, Wong E, Gumbiner BM (2001) E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. J Cell Biol 153:1049–1060

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Harrison-Bernard LM, El-Dahr SS, O’Leary DF, Navar LG (1999) Regulation of angiotensin II type 1 receptor mRNA and protein in angiotensin II-induced hypertension. Hypertension 33:340–346

    PubMed  CAS  Google Scholar 

  • Hu J, Mao Y, White K (2002) Renal cell carcinoma and occupational exposure to chemicals in Canada. Occup Med (Lond) 52:157–164

    Article  CAS  Google Scholar 

  • IARC (1993) Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. International agency for research on cancer monographs on the evaluation of carcinogenic risks to humans, vol. 58. IARC Scientific Publications, Lyon, pp 1–415

    Google Scholar 

  • Jacquillet G, Barbier O, Cougnon M et al (2006) Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Renal Physiol 290:F127–F137

    Article  PubMed  CAS  Google Scholar 

  • Jin YH, Clark AB, Slebos RJ et al (2003) Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet 34:326–329

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Schlichter L, Bendayan M, Bendayan R (2001) Functional expression of P-glycoprotein in rat brain microglia. J Pharmacol Exp Ther 299:204–212

    PubMed  CAS  Google Scholar 

  • Lee WK, Abouhamed M, Thévenod F (2006) Caspase-dependent and -independent pathways for cadmium-induced apoptosis in cultured kidney proximal tubule cells. Am J Physiol Renal Physiol 291:F823-F832

    Article  PubMed  CAS  Google Scholar 

  • Lee WK, Bork U, Gholamrezaei F, Thévenod F (2005) Cd2+-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+ uniporter. Am J Physiol Renal Physiol 288:F27-F39

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Habeebu SS, Liu Y, Klaassen CD (1998) Acute CdMT injection is not a good model to study chronic Cd nephropathy: comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats. Toxicol Appl Pharmacol 153:48–58

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Call KM (1995) Cadmium-induced expression of immediate early genes in LLC-PK1 cells. Kidney Int 48:383–389

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi J, Takai Y (2005) Molecular perspective on tight-junction assembly and epithelial polarity. Adv Drug Deliv Rev 57:815–855

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Niewenhuis RJ, Dimitriu C, Prozialeck WC (1997) Ultrastructural characterization of the early changes in intercellular junctions in response to cadmium (Cd2+) exposure in LLC-PK1 cells. Toxicol Appl Pharmacol 142:1–12

    Article  PubMed  CAS  Google Scholar 

  • Pesch B, Haerting J, Ranft U et al. (2000) Occupational risk factors for renal cell carcinoma: agent-specific results from a case-control study in Germany. MURC Study. Group Multicenter urothelial and renal cancer study. Int J Epidemiol 29:1014–1024

    Article  PubMed  CAS  Google Scholar 

  • Polakis P (1999) The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9:15–21

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Grunwald GB, Dey PM, Reuhl KR, Parrish AR (2002) Cadherins and NCAM as potential targets in metal toxicity. Toxicol Appl Pharmacol 182:255–265

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Lamar PC, Lynch SM (2003) Cadmium alters the localization of N-cadherin, E-cadherin, and beta-catenin in the proximal tubule epithelium. Toxicol Appl Pharmacol 189:180–195

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Niewenhuis RJ (1991a) Cadmium (Cd2+) disrupts Ca(2+)-dependent cell-cell junctions and alters the pattern of E-cadherin immunofluorescence in LLC-PK1 cells. Biochem Biophys Res Commun 181:1118–1124

    Article  CAS  Google Scholar 

  • Prozialeck WC, Niewenhuis RJ (1991b) Cadmium (Cd2+) disrupts intercellular junctions and actin filaments in LLC-PK1 cells. Toxicol Appl Pharmacol 107:81–97

    Article  CAS  Google Scholar 

  • Qu W, Fuquay R, Sakurai T, Waalkes MP (2006) Acquisition of apoptotic resistance in cadmium-induced malignant transformation: specific perturbation of JNK signal transduction pathway and associated metallothionein overexpression. Mol Carcinog 45:561–571

    Article  PubMed  CAS  Google Scholar 

  • Rothen-Rutishauser B, Riesen FK, Braun A, Gunthert M, Wunderli-Allenspach H (2002) Dynamics of tight and adherens junctions under EGTA treatment. J Membr Biol 188:151–162

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Herak-Kramberger CM, Brown D (2001) Subchronic cadmium treatment affects the abundance and arrangement of cytoskeletal proteins in rat renal proximal tubule cells. Toxicology 165:205–216

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH, Smit JJ, van Tellingen O et al. (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  PubMed  CAS  Google Scholar 

  • Singh BR, McLaughlin MJ (1999) Cadmium in soils and plants. In: McLaughlin MJ, Singh BR (eds), Developments in plant and soil sciences, vol. 85. Kluwer Academic Publishers, Dordrecht, pp 257–268

    Google Scholar 

  • Takebayashi S, Jimi S, Segawa M, Kiyoshi Y (2000) Cadmium induces osteomalacia mediated by proximal tubular atrophy and disturbances of phosphate reabsorption A study of 11 autopsies. Pathol Res Pract 196:653–663

    PubMed  CAS  Google Scholar 

  • Thévenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93:87–93

    Article  CAS  Google Scholar 

  • Thévenod F, Friedmann JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K(+)-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. FASEB J 13:1751–1761

    PubMed  Google Scholar 

  • Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896

    Article  PubMed  Google Scholar 

  • Verougstraete V, Lison D, Hotz P (2002) A systematic review of cytogenetic studies conducted in human populations exposed to cadmium compounds. Mutat Res 511:15–43

    Article  PubMed  CAS  Google Scholar 

  • Vleminckx K, Kemler R (1999) Cadherins and tissue formation: integrating adhesion and signaling. Bioessays 21:211–220

    Article  PubMed  CAS  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  PubMed  CAS  Google Scholar 

  • Wegener J, Keese CR, Giaever I (2000) Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259:158–166

    Article  PubMed  CAS  Google Scholar 

  • Wolff NA, Abouhamed M, Verroust PJ, Thevenod F (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 318:782–791

    Article  PubMed  CAS  Google Scholar 

  • Woost PG, Orosz DE, Jin W et al. (1996) Immortalization and characterization of proximal tubule cells derived from kidneys of spontaneously hypertensive and normotensive rats. Kidney Int 50: 125–134

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Mori Y, Hayashi R et al. (2003) Suppression of intestinal polyposis in Mdr1-deficient ApcMin/+ mice. Cancer Res 63:895–901

    PubMed  CAS  Google Scholar 

  • Zalups RK, Koropatnick J (2000) Molecular biology and toxicology of metals. Taylor and Francis, London, U.K. and New York, NY

    Google Scholar 

  • Zimmerhackl LB, Momm F, Wiegele G, Brandis M (1998) Cadmium is more toxic to LLC-PK1 cells than to MDCK cells acting on the cadherin-catenin complex. Am J Physiol 275:F143–F153

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. U. Hopfer (Case Western Reserve University, Cleveland, OH) for providing the cell line and Dr. Joachim Wegener (Institute for Biochemistry, University of Münster, Germany) for expert advice in setting up the ECIS technology and valuable discussions. This study was supported by the Deutsche Forschungsgemeinschaft (TH 345/8–1 and 8–2) and start-up funds from the University of Witten/Herdecke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Thévenod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thévenod, F., Wolff, N.A., Bork, U. et al. Cadmium induces nuclear translocation of β-catenin and increases expression of c-myc and Abcb1a in kidney proximal tubule cells. Biometals 20, 807–820 (2007). https://doi.org/10.1007/s10534-006-9044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-006-9044-9

Keywords

Navigation