Skip to main content
Log in

Phase Transformations Under the Action of Femtosecond Pulses in ZnO–MgO–Al2O3–SiO2 Sitalls

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The influence of femtosecond laser micromachining in thermal and athermal regimes on the structure of a transparent glass-ceramic based on the ZnO–MgO–Al2O3–SiO2 system, which is characterized by heightened mechanical strength and hardness, was studied. Amorphization of nanosized granite ZnAl2O4 crystals, which occurs under the action of laser pulses, is confirmed by means of electron microscopy and electron diffraction. Quantitative phase microscopy was used to assess the change in the refractive index in the tracks written by a laser beam. In an athermal regime, at pulse repetition frequency 10 kHz, the full amorphization of the crystalline phase in the laser processing region in the bulk of the sitall effects an increase in the refractive index by ∆n = 0.0007. The results obtained expand the potential areas of application of transparent sitalls with heightened strength and open up the possibility of forming channel waveguides in their bulk by means of direct laser writing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. D. Tan, B. Zhang, and J. Qiu, “Ultrafast laser direct writing in glass: thermal accumulation engineering and applications,” Laser Photonics Rev., 15(9), 2000455 (2021).

    Article  CAS  Google Scholar 

  2. R. Stoian and JP Colombier, “Advances in ultrafast laser structuring of materials at the nanoscale,” Nanophotonics, 9(16), 4665 – 4688 (2020).

    Article  Google Scholar 

  3. B. Zhang, L. Wang, and F. Chen, “Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications,” Laser Photonics Rev., 14(8), 1900407 (2020).

    Article  CAS  Google Scholar 

  4. K. L. Wlodarczyk, D. P. Hand, and M. M. Maroto-Valer, “Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser,” Sci. Rep., 9(1), 1 – 13 (2019).

    Article  Google Scholar 

  5. A. Wolf, A. Dostovalov, K. Bronnikov, et al., “Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses,” Opt. Express, 27(10), 13978 – 13990 (2019).

    Article  CAS  Google Scholar 

  6. A. Lipatiev, S. Fedotov, S., Lotarev, et al., “Direct laser writing of depressed-cladding waveguides in extremely low expansion lithium aluminosilicate glass-ceramics,” Opt. Laser Technol., 138, 106846 (2021).

  7. J. Guan, “Femtosecond-laser-written integrated photonics in bulk glass-ceramics Zerodur,” Ceram., 47(7), 10189 – 10192 (2021).

    CAS  Google Scholar 

  8. P. H. D. Ferreira, D. C. N. Fabris, M. V. Boas, et al., “Transparent glass-ceramic waveguides made by femtosecond laser writing,” Opt. Laser Technol., 136, 106742 (2021).

    Article  CAS  Google Scholar 

  9. V. R. Bhardwaj, E. Simova, P. B. Corkum, et al., “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97(8), 083102 (2005).

    Article  Google Scholar 

  10. W. Holland and G. H. Beall, Glass-Ceramic Technology, John Wiley & Sons, New Jersey (2019).

    Book  Google Scholar 

  11. E. Zanotto, “A bright future for glass-ceramics,” Am. Ceram. Soc. Bull., 89, 19 – 27 (2010.).

    CAS  Google Scholar 

  12. B. Mirhadi, B. Mehdikhani, and N. Askari, “Effect of zinc oxide on microhardness and sintering behavior of MgO–Al2O3–SiO2 glass-ceramic system,” Solid State Sci., 14(4), 430 – 434 (2012).

    Article  CAS  Google Scholar 

  13. O. Dymshits, M. Shepilov, and A. Zhilin, “Transparent glass-ceramics for optical applications,” MRS Bull., 42, 200 – 205 (2017).

    Article  CAS  Google Scholar 

  14. G. H. Chen and X. Y. Liu, “Sintering, crystallization and properties of MgO–Al2O3–SiO2 system glass-ceramics containing ZnO,” J. Alloys Compd., 431(1 – 2), 282–286 (2007).

    Article  CAS  Google Scholar 

  15. S. Seidel, M. Dittmer,W. Höland, et al., “High-strength, translucent glass-ceramics in the system MgO–ZnO–Al2O3–SiO2–ZrO2,” J. Eur. Ceram. Soc., 37(7), 2685 – 2694 (2017).

    Article  CAS  Google Scholar 

  16. S. V. Lotarev, A. S. Lipatiev, T. O. Lipateva, et al., “Ultrafast-laser vitrification of laser-written crystalline tracks in oxide glasses,” J. Non-Cryst. Solids, 516. 1 – 8 (2019).

    Article  CAS  Google Scholar 

  17. G. Yu. Shakhgildyan, V. I. Savinkov, and A. Yu. Shakhgildyan, “Effect of sitallization conditions on the hardness of transparent sitalls in the system ZnO–MgO–Al2O3–SiO2,” Glass Ceram., 77(11), 426 – 428 (2021).

    Article  CAS  Google Scholar 

  18. V. N. Sigaev, A. S. Lipat’ev, and S. S. Fedotov, “Femtosecond laser modification of antimony-containing lithium-aluminum- silicate glass and transparent sitall obtained from it,” Glass Ceram., 76(9), 370 – 373 (2020).

  19. V. V. Golubkov, O. S. Dymshits, V. I. Petrov, et al., “Small-angle x-ray scattering and low-frequency Raman scattering study of liquid phase separation and crystallization in titania-containing glasses of the ZnO–Al2O3–SiO2 System,” J. Non-Cryst. Solids, 351(8 – 9), 711 – 721 (2005).

    Article  CAS  Google Scholar 

  20. V. N. Sigaev, A. A. Loshmanov, R. Ya. Khodakovskaya, et al., “Structure of titanosilicate glasses according to neutron diffraction,” Fiz. Khim. Stekla, 1(5), 403 – 406 (1975).

    CAS  Google Scholar 

  21. S. Richter, F. Zimmermann, S. Döring, et al., “Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy,” Appl. Phys., 110(1), 9 – 15 (2013).

    Article  CAS  Google Scholar 

  22. S. Kanehira, K. Miura, and K. Hirao, “Ion-exchange in glass using femtosecond laser irradiation,” Appl. Phys. Lett., 93(2), 023112 (2008).

    Article  Google Scholar 

  23. Y. Liu, M. Shimizu, B. Zhu, et al., “Micromodification of element distribution in glass using femtosecond laser irradiation,” Opt. Lett., 34(2), 136 – 138 (2009).

    Article  Google Scholar 

  24. V. R. Bhardwaj, E. Simova, P. B. Corkum, et al., “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97(8), 083102 (2005).

    Article  Google Scholar 

  25. A. Fuerbach, S. Gross, D. Little, et al., “Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation,” Proc. SPIE, 9983, 14 – 20 (2016).

    Google Scholar 

  26. A. A. Loshmanov, V. N. Sigaev, R. Ya. Khodakovskaya, et al., “Small-angle neutron scattering on silica glasses containing titania,” J. Appl. Crystallogr., 7(2), 207 – 210 (1974).

    Article  CAS  Google Scholar 

  27. S. M. Eaton, H. Zhang, P. R. Herman, et al., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express, 13, 4708 – 4716 (2018).

    Article  Google Scholar 

  28. M. M. Smedskjaer, R. E. Youngman, and J. C. Mauro, “Impact of ZnO on the structure and properties of sodium aluminosilicate glasses: Comparison with alkaline earth oxides,” J. Non-Cryst. Solids, 381, 58 – 64 (2013).

    Article  CAS  Google Scholar 

  29. D. Choudhury, J. R. Macdonald, and A. K. Kar “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev., 8(6), 827 – 846 (2014).

    Article  CAS  Google Scholar 

  30. F. Sima, K. Sugioka, R. M. Vazquez, et al., “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics, 7(3), 613 – 634 (2018).

    Article  CAS  Google Scholar 

  31. S. Gross, M. Dubov, and MJWithford, “On the use of the Type I and II scheme for classifying ultrafast laser direct-write photonics,” Opt. Express, 23(6), 7767 – 7770 (2015).

  32. T. Calmano and S. Müller, “Crystalline waveguide lasers in the visible and near-infrared spectral range,” IEEE J. Selected Topics Quantum Electr., 21(1), 401 – 413 (2014).

    Article  Google Scholar 

Download references

This work was supported by the Russian Science Foundation (agreement No. 19-19-00613-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sigaeva.

Additional information

Translated from Steklo i Keramika, No. 1, pp. 3 – 11, January, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigaeva, V.N., Naumov, A.S., Lipat’ev, A.S. et al. Phase Transformations Under the Action of Femtosecond Pulses in ZnO–MgO–Al2O3–SiO2 Sitalls. Glass Ceram 80, 3–8 (2023). https://doi.org/10.1007/s10717-023-00546-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-023-00546-0

Keywords

Navigation