Skip to main content
Log in

Laser Amorphization of a Crystalline Phase in the Bulk of a Thermally Stable Lithium Aluminosilicate Glass-Ceramic

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents results of femtosecond laser micromachining of a transparent glass-ceramic in the Li2O–Al2O3–SiO2 system with a near-zero linear thermal expansion coefficient in the thermal and athermal regimes. Electron microscopy and electron diffraction data confirm complete amorphization of nanocrystals of β-eucryptite-like solid solutions under the effect of laser pulses. Using quantitative phase microscopy, we have evaluated refractive index changes in individual laser-written tracks. In the athermal regime at a pulse repetition rate of 10 kHz, complete glass-ceramic amorphization leads to a decrease in the refractive index of the material (Δn = −0.0035) in the laser treatment region, which opens up the possibility of using direct laser writing of channel waveguides in a thermally stable glass-ceramic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Low Thermal Expansion Glass Ceramics, Bach, H. and Krause, D., Eds., Berlin: Springer, 2005, pp. 121–235. https://doi.org/10.1007/3-540-28245-9_3

    Book  Google Scholar 

  2. Hartmann, P., Jedamzik, R., Carré, A., Krieg, J., and Westerhoff, T., Glass ceramic ZERODUR®: even closer to zero thermal expansion: a review, part 1, J. Astron. Telesc., Instrum., Syst., 2021, vol. 7, no. 2, p. 020901. https://doi.org/10.1117/1.JATIS.7.2.020901

    Article  Google Scholar 

  3. Mitra, I., ZERODUR: a glass-ceramic material enabling optical technologies, Opt. Mater. Express, 2022, vol. 12, no. 9, pp. 3563–3576. https://doi.org/10.1364/OME.460265

    Article  CAS  Google Scholar 

  4. Venkateswaran, C., Sreemoolanadhan, H., and Vaish, R., Lithium aluminosilicate (LAS) glass-ceramics: a review of recent progress, Int. Mater. Rev., 2022, vol. 67, no. 6, pp. 620–657. https://doi.org/10.1080/09506608.2021.1994108

    Article  CAS  Google Scholar 

  5. Passaro, V.M., Cuccovillo, A., Vaiani, L., De Carlo, M., and Campanella, C.E., Gyroscope technology and applications: a review in the industrial perspective, Sensors, 2017, vol. 17, no. 1, p. 2284. https://doi.org/10.3390/s17102284

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tan, D., Zhang, B., and Qiu, J., Ultrafast laser direct writing in glass: thermal accumulation engineering and applications, Laser Photonics Rev., 2021, vol. 15, no. 9, p. 2000455. https://doi.org/10.1002/lpor.202000455

    Article  CAS  Google Scholar 

  7. Bhardwaj, V.R., Simova, E., Corkum, P.B., and Rayner, D.M., Femtosecond laser-induced refractive index modification in multicomponent glasses, J. Appl. Phys., 2005, vol. 97, no. 8, p. 083102. https://doi.org/10.1063/1.1876578

    Article  CAS  Google Scholar 

  8. Lipatiev, A., Fedotov, S., Lotarev, S., Naumov, A., Lipateva, T., Savinkov, V., Shakhgildyan, G., and Sigaev, V., Direct laser writing of depressed-cladding waveguides in extremely low expansion lithium aluminosilicate glass-ceramics, Opt. Laser Technol., 2021, vol. 138, p. 106846. https://doi.org/10.1016/j.optlastec.2020.106846

    Article  CAS  Google Scholar 

  9. Guan, J., Femtosecond-laser-written integrated photonics in bulk glass-ceramics Zerodur, Ceram. Int., 2021, vol. 47, no. 7, pp. 10189–10192. https://doi.org/10.1016/j.ceramint.2020.12.099

    Article  CAS  Google Scholar 

  10. Naumov, A.S., Lotarev, S.V., Lipatiev, A.S., Fedotov, S.S., Savinkov, V.I., and Sigaev, V.N., RF patent 2781465, 2022.

  11. Lotarev, S.V., Lipatiev, A.S., Lipateva, T.O., Fedotov, S.S., Naumov, A.S., Moiseev, I.A., and Sigaev, V.N., Ultrafast-laser vitrification of laser-written crystalline tracks in oxide glasses, J. Non-Cryst. Solids, 2019, vol. 516, pp. 1–8. https://doi.org/10.1016/j.jnoncrysol.2019.04.027

    Article  CAS  Google Scholar 

  12. Sigaev, V.N., Savinkov, V.I., Shakhgil’dyan, G.Yu., Naumov, A.S., Lotarev, S.V., Klimenko, N.N., Golubev, N.V., and Presnyakov, M.Yu., On the possibility of precision control of the linear thermal expansion coefficient of transparent lithium-aluminum-silicate sitals near zero values, Glass Ceram., 2020, vol. 76, no. 11, pp. 446–450. https://doi.org/10.1007/s10717-020-00220-9

    Article  CAS  Google Scholar 

  13. Sigaev, V.N., Lipatiev, A.S., Fedotov, S.C., Lotarev, S.V., Shakhgil’dyan, G.Yu., Naumov, A.S., and Savinkov, V.I., Femtosecond laser modification of antimony-containing lithium-aluminum-silicate glass and transparent sitall obtained from it, Glass Ceram., 2020, vol. 76, no. 9, pp. 370–373. https://doi.org/10.1007/s10717-020-00203-w

    Article  CAS  Google Scholar 

  14. Choudhury, D., Macdonald, J.R., and Kar, A.K., Ultrafast laser inscription: perspectives on future integrated applications, Laser Photonics Rev., 2014, vol. 8, no. 6, pp. 827–846. https://doi.org/10.1002/lpor.201300195

    Article  CAS  Google Scholar 

  15. Alekseeva, I., Dymshits, O., Ermakov, V., Zhilin, A., Petrov, V., and Tsenter, M., Raman spectroscopy quantifying the composition of stuffed β-quartz derivative phases in lithium aluminosilicate glass-ceramics, J. Non-Cryst. Solids, 2008, vol. 354, nos. 45–46, pp. 4932–4939. https://doi.org/10.1016/j.jnoncrysol.2008.07.016

    Article  CAS  Google Scholar 

  16. Eaton, S.M., Zhang, H., Herman, P.R., Yoshino, F., Shah, L., Bovatsek, J., and Arai, A.Y., Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate, Opt. Express, 2018, vol. 13, pp. 4708–4716. https://doi.org/10.1364/OPEX.13.004708

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, agreement no. 19-19-00613-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sigaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, A.S., Lotarev, S.V., Lipatiev, A.S. et al. Laser Amorphization of a Crystalline Phase in the Bulk of a Thermally Stable Lithium Aluminosilicate Glass-Ceramic. Inorg Mater 59, 404–409 (2023). https://doi.org/10.1134/S0020168523040088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523040088

Keywords:

Navigation