Skip to main content
Log in

Activity Thermodynamics of Compounds in Carbonation-Hydration Hardening Cements

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

It is established by calculating the equilibrium partial pressure of carbon dioxide gas \({p}_{{\mathrm{CO}}_{2}}\) or the equilibrium activity of carbonation \(\left[{\mathrm{CO}}_{3}^{2-}\right]\) in the carbonation reactions of various mineral compounds that practically all investigated compounds are capable of carbonation under the influence of dry or wet carbon dioxide with the formation of calcium or magnesium carbonates. The comparative thermodynamic activity of certain mineral compounds in the carbonation reactions is much higher than that of the minerals wollastonite CS and rankinite C3S2, which are present in clinker for the production of carbonate hardening cement Solidia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. K. Xia, Gu Yue, Linhua Jiang, et al. “Carbonation resistance of surface protective materials modified with hybrid NanoSiO2,” Coatings, 11(3), 269 (2021).

  2. B. J. Zhan, D. Xuan, C. Poon, and C. Shi, “Mechanism for rapid hardening of cement pastes under coupled CO2-water curing regime,” Cement and Concrete Composites, 97, 78 – 88 (2019).

    Article  CAS  Google Scholar 

  3. Y. Fang and J. Chang, “Rapid hardening â-C2S mineral and microstructure changes activated by accelerated carbonation curing,” J. Thermal Anal. Calorim., 129(2), 681 – 689 (2017).

    Article  CAS  Google Scholar 

  4. I. V. Korchunov and E. N. Potapova, “Phase composition of CO2-hardened cement in the presence of chloride ions,” Mater. Today: Proc., 38, 1963 – 1967 (2021).

    CAS  Google Scholar 

  5. V. Meyer, N. de Cristofaro, J. Bryant, and S. Sahu, “Solidia cement an example of carbon capture and utilization,” Key Engi. Mater., 761, 197 – 203 (2018).

    Article  Google Scholar 

  6. X. Xian, D. Zhang, and Y. Shao, “Flue gas carbonation curing of cement paste and concrete at ambient pressure,” J. Cleaner Prod., 313, 127943 (2021).

    Article  CAS  Google Scholar 

  7. L.Wang, L. Chen, JL Provis, et al., “Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas,” Cement and Concrete Composites, 106, 103489 (2020).

    Article  CAS  Google Scholar 

  8. L. Wang, L. Chen, D. C. W. Tsang, et al., “Biochar as green additives in cement-based composites with carbon dioxide curing,” J. Cleaner Prod., 258, 120678 (2020).

    Article  CAS  Google Scholar 

  9. R. S. Lin, Wang Xiao-Yong, and Yi-han, “Effects of cement types and addition of quartz and limestone on the normal and carbonation curing of cement paste,” Constr. Building Mater., 305, 124799 (2021).

    Article  CAS  Google Scholar 

  10. D. Zhang, V. C. Li, and B. R. Ellis, “Optimal pre-hydration age for CO2 sequestration through Portland cement carbonation,” ACS Sustainable Chem. Eng., 6(12), 15976 – 15981 (2018).

    Article  CAS  Google Scholar 

  11. N. Lippiatt, T. C. Ling, and S. Eggermont, “Combining hydration and carbonation of cement using super-saturated aqueous CO2 solution,” Constr. Building Mater., 229, 116825 (2019).

    Article  CAS  Google Scholar 

  12. A. N. Junior, R. D. T. Filho, E. M. R. Fairbairn, and J. Dweck, “CO2 sequestration by high initial strength Portland cement pastes,” J. Thermal Anal. Calorim., 113(3), 1577 – 1584 (2013).

    Article  CAS  Google Scholar 

  13. S. Siddique, A. Naqi, and Naqi J. G. Naqi, “Influence of water to cement ratio on CO2 uptake capacity of belite-rich cement upon exposure to carbonation curing,” Cement and Concrete Composites, 111, 103616 (2020).

  14. V. Rostami, Y. Shao, and A. J. Boyd, “Microstructure of cement paste subject to early carbonation curing,” Cement Concrete Res., 42(1), 186 – 193 (2012).

    Article  CAS  Google Scholar 

  15. J. G. Jang and H. K. Lee, “Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement,” Cement Concrete Res., 82, 50 – 57 (2016).

    Article  CAS  Google Scholar 

  16. J. Ibáñez, Lluís Artús, Ramon Cuscó, et al., “Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy,” J. Raman Spectrosc.: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 38(1), 61 – 67 (2007).

  17. Solidia. Solutions. URL: https://www.solidiatech.com/solutions.html (accessed 12/13/2021).

  18. Solidia Life Project. URL: https://www.solidlife.eu/ (date of access: 12/13/2021).

  19. V. I. Babushkin, G. M. Matveev, O. P. Mchedlov-Petrosyan, Thermodynamics of Silicates [in Russian], Stroiizdat, Moscow (1986).

    Google Scholar 

  20. B. Lottenbach, DA Kulik, T. Matschei, et al. “Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials,” Cement Concrete Res., 115, 472 – 506 (2018).

    Article  Google Scholar 

  21. T. Matschei, B. Lothenbach, and F. P. Glasser, “Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O,” Cement Concrete Res., 37(10), 1379 – 1410 (2007).

    Article  CAS  Google Scholar 

  22. M. E. Parron-Rubio, F. Perez-Garcia, A. Gonzalez-Herrera, et al., “Slag substitution as a cementing material in concrete: Mechanical, physical and environmental properties,” Materials, 12(18), 2845 (2019).

    Article  CAS  Google Scholar 

  23. I. V. Korchunov, E. A. Dmitrieva, and E. N. Potapova, “Structural features of a cement matrix modified with additives of sedimentary origin,” Mater. Sci. Eng., 1083(1), 012033 (2021).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Korchunov.

Additional information

Translated from Steklo i Keramika, No. 9, pp. 34 – 43, September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivkov, S.P., Korchunov, I.V., Potapova, E.N. et al. Activity Thermodynamics of Compounds in Carbonation-Hydration Hardening Cements. Glass Ceram 79, 371–377 (2023). https://doi.org/10.1007/s10717-023-00516-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-023-00516-6

Keywords

Navigation