Skip to main content
Log in

Structuring of Methanol Synthesis Catalyst CuO/ZnO/γ-Al2O3 During Mechanochemical Synthesis

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The mechanochemical synthesis of the methanol synthesis catalyst was investigated. Comparative mechanoactivation of the individual components of the catalyst (copper oxide, zinc oxide, and aluminum oxide) as well as their mixtures was conducted under different conditions. The structural characteristics, obtained for the methanol synthesis catalyst by means of x-ray phase analysis, scanning microscopy, and low-temperature adsorption nitrogen, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. I. V. Sazonov, “Catalysts for methanol synthesis,” Izv. Vyssh. Ucheb. Zaved., Neft’ i Gaz, No. 2, 117 – 122 (2010).

  2. R. N. Rumyantsev, A. A. Mel’nikov, A. A. Batanov, et al., “Effect of mechanochemical activation conditions on the physicochemical properties of zinc oxide,” Glass Ceram., 77(9 – 10), 400 – 404 (2020) [Steklo Keram., No. 10, 41 – 46 (2020)].

  3. M. R. Gogate, “Methanol synthesis revisited: The nature of the active site of Cu in industrial Cu/ZnO/Al2O3 catalyst and Cu–Zn synergy,” Petroleum Sci. Technol., 37(6), 671 – 678 (2019).

    Article  CAS  Google Scholar 

  4. T. P. Minyukova, A. A. Khasin, A. V. Khasin, and T. M. Yur’eva, “Predictables in the formation of efficient copper-containing methanol synthesis catalysts,” Kinetika i Kataliz, 61(6), 855 – 863.

  5. G. C. Chinchen, P. J. Denny, J. R. Jennings, et al., “Synthesis of methanol,” Appl. Catal., 36, 1 – 65 (1988).

    Article  CAS  Google Scholar 

  6. K. C. Waugh, “Methanol synthesis,” Catal. Lett., 142, 1153 – 1166 (2012).

    Article  CAS  Google Scholar 

  7. A. A. Khassin, T. P. Minyukova, and T. M. Yurieva, “Genesis of catalysts for methanol synthesis,” Mend. Commun., 24(2), 67 (2014).

    Article  CAS  Google Scholar 

  8. S. E. Roman’kov, S. D. Kaloshkin, E. V. Kaevitser, and Z. B. Sagdoldina, “Mechanochemical synthesis of composite coatings,” Fiz. Met. Metalloved., 106(1), 70 – 78 (2008).

    Google Scholar 

  9. A. V. Afineevskii, D. A. Prozorov, K. A. Nikitin, et al. “Mechanochemical synthesis of a hydrogenation catalyst from nickel oxide and silica gel,” Zh. Obshchei Khim., 91(3), 439 – 448 (2021).

    Article  Google Scholar 

  10. C. Suryanarayana, “Mechanical alloying and milling,” Progr. Mater. Sci., 46(1 – 2), 1 – 184 (2001).

  11. H. T. Le, H. O. T. Nguyen, H. V. Nguyen, et al., “Preparation of ZnFe2O4 powder by self-sustaining reactions process from Fe3O4 and Zn of Fe and ZnO,” in: N. T. H. Minh (ed.), The 15th International Symposium on Eco-materials Processing and Design, ISEPD 2014, In Vietnam (2014), pp. 120 – 123.

  12. O. A. Bulavchenko, T. N. Afonasenko, P. G. Tsyrul’nikov, et al., “MnOxAl2O3 – deep oxidation catalysts prepared using mechanochemical activation. Influence of synthesis conditions on the phase composition and catalytic properties,” Kinetika i Kataliz, 55(5), 671 – 681 (2014).

    Google Scholar 

  13. A. I. Kitaigorodskii, X-Ray Diffraction Analysis of Fine-Crystalline and Amorphous Bodies [in Russian], Kniga po Trebovaniyu, Moscow (2013).

  14. A. A. Komlev and E. F. Vilezhaninov, “Production of nanopowders based on non-stoichiometric magnesium aluminum spinel by glycine-nitrate combustion,” Zh. Prikl. Khim., 86(9), 1373 – 1380 (2013).

    Google Scholar 

  15. N. N. Smirnov, Yu. G. Shirokov, A. P. Ilyin, et al., “Mechanochemical synthesis of copper-containing catalysts,” in: A. P. Il’in (ed.), Scientific Fundamentals of Catalyst Preparation. Creative Legacy and Further Development of Works by Prof. I. P. Kirillov [in Russian], Ivanovo State University of Chemical Technology, Ivanovo (2008), p. 43.

  16. A. V. Afineevskii, D. A. Prozorov, T. Yu. Osadchaya, and K. A. Nikitin, A Method for the Mechanochemical Synthesis of a Nickel Hydrogenation Catalyst, Pat. RF No. 2722298 C1 [in Russian] (2019).

  17. N. E. Gordina and V. Yu. Prokof’ev, Low-modulus Zeolites: Structure, Properties, Synthesis [in Russian], KRASAND, Moscow (2017).

  18. O. V. Krylov, Heterogeneous Catalysis [in Russian], IKTs Akadem-Kniga, Moscow (2004).

  19. Yu. G. Shirokov, Mechanochemistry in Catalyst Technology [in Russian], IGKhTU, Ivanovo (2005).

  20. A. V. Afineevskii, D. A. Prozorov, T. Yu. Osadchaya, and R. N. Rumyantsev, Hydrogenation on Heterogeneous Catalysts [in Russian], Ivanovo State University of Chemical Technology, Buk, Kazan’ (2020).

Download references

This investigation was supported by Russian Science Foundation grant No. 21-73-10210, https://rscf.ru/project/21-73-10210/. The equipment at the TsKP IGKhTU was recruited into this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Rumyantsev.

Additional information

Translated from Steklo i Keramika, No. 1, pp. 51 – 58, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, D.V., Prozorov, D.A., Rumyantsev, R.N. et al. Structuring of Methanol Synthesis Catalyst CuO/ZnO/γ-Al2O3 During Mechanochemical Synthesis. Glass Ceram 79, 37–41 (2022). https://doi.org/10.1007/s10717-022-00449-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-022-00449-6

Keywords

Navigation