Skip to main content
Log in

Mechanochemical and Ceramic Synthesis of Cobalt Ferrite

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The effect of mechanochemical activation on the formation of a cobalt ferrite phase from iron and cobalt oxalates was studied. X-ray phase, x-ray diffraction, and simultaneous thermal analysis, scanning electron microscopy, and the low-temperature nitrogen adsorption-desorption method were used to study the composition and properties of the resulting product. It was established that on solid-phase interaction of the initial components cobalt ferrite is formed at 1100°C. Preliminary mechanochemical activation of the initial components in a roll-ring vibratory mill makes it possible to reduce the temperature of cobalt ferrite synthesis to 400°C. The properties of cobalt ferrite can be improved by lowering its synthesis temperature. It is shown that CoFe2O4 obtained by the mechanochemical method of synthesis has a more developed specific surface area and porous structure compared to cobalt ferrite obtained by solid-phase interaction of the initial components without pretreatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. C. Kaçar, B. Dalkiran, P. E. Erden, and E. Kiliç, “An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode,” J. Appl. Surf. Sci., 311, 139 – 146 (2014). DOI: https://doi.org/10.1016/j.msec.2011.10.028

    Article  CAS  Google Scholar 

  2. F. A. Tourinho, R. Franck, and R. Massart, “Aqueous ferrofluids based on manganese and cobalt ferrites,” J. Mater. Sci., 25(7), 3249 – 3254 (1990).

    Article  CAS  Google Scholar 

  3. V. Cabuil, V. Dupuis, D. Talbot, and S. Neveu, “Ionic magnetic fluid based on cobalt ferrite nanoparticles: influence of hydrothermal treatment on the nanoparticle size,” J. Magn. Magn. Mater., 323(10), 1238 – 1241 (2011). DOI: https://doi.org/10.1016/j.jmmm.2010.11.013

    Article  CAS  Google Scholar 

  4. J. B. Silva, C. F. Diniz, R. M. Lago, and N. D. Mohallem, “Catalytic properties of nanocomposites based on cobalt ferrites dispersed in sol-gel silica,” J. Non-Cryst. Solids, 348, 201 – 204 (2004).

    Article  CAS  Google Scholar 

  5. A. A. Thomas, A. Pietro, M. Emanuela, et al., “Synthesis and characterization of copper ferrite magnetic nanoparticles by hydrothermal route,” J. Chem. Eng. Trans., 47, 151 – 156 (2016). DOI: https://doi.org/10.3303/CET1647026

    Article  Google Scholar 

  6. Z. Zi, Y. Sun, X. Zhu, and W. Song, “Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles,” J. Magn. Magn. Mater., 321, 1251 – 1256 (2009).

    Article  CAS  Google Scholar 

  7. V. Gopalan, P. A. Joy, I. A. Al-Omari, et al., “On the structural, magnetic and electrical properties of sol–gel derived nanosized cobalt ferrite,” J. Alloys Compd., 485 711 – 718 (2009).

    Article  CAS  Google Scholar 

  8. T. P. Braga, B. M. C. Sales, A. N. Pinheiro, et al., “Catalytic properties of cobalt and nickel ferrites dispersed in mesoporous silicon oxide for ethylbenzene dehydrogenation with CO2,” J. Catal. Sci. Technol., 1(8), 1383 – 1392 (2011). DOI: https://doi.org/10.1039/C1CY00176K

    Article  CAS  Google Scholar 

  9. A. A. Magaeva, E. P. Naiden, O. G. Terekhova, et al., “Mechanochemical synthesis, phase composition, structural parameters, and magnetic properties of manganese ferrospinels,” J. Nanotechnologies in Russia, 8(7 – 8), 495 – 501 (2013). DOI: https://doi.org/10.1134/S1995078013040083

  10. L. J. Berchmans, R. Karthikeyan, M. Helan, et al., “Mechanochemical synthesis and electrochemical characterization of nano crystalline calcium ferrite,” J. Catal. Lett., 141(10), 1451 – 1457 (2011). DOI: https://doi.org/10.1007/s10562-011-0636-9

    Article  CAS  Google Scholar 

  11. E. Manova, D. Paneva, B. Kunev, et al., “Mechanochemical synthesis and characterization of nanodimensional iron-cobalt spinel oxides,” J. Alloys Compd., 485(1 – 2), 356 – 361 (2009). DOI: https://doi.org/10.1016/j.jallcom.2009.05.107

  12. K. O. Denisova, A. A. Ilyin, R. N. Rumyantsev, et al., “Low-temperature synthesis and catalytic activity of cobalt ferrite in nitrous oxide (N2O) decomposition reaction,” J. Catalysts, 11(8), 889 (2021). DOI: https://doi.org/10.3390/catal11080889

    Article  CAS  Google Scholar 

  13. T. Ekström, C. Chatfield, W. Wruss, M. Maly-Schreiber, “The use of x-ray diffraction peak-broadening analysis to characterize ground Al2O3 powders,” J. Mater. Sci., 20(4), 1266 – 1274 (1985).

    Article  Google Scholar 

  14. H. Heegn, “On the connection between ultrafine grinding and mechanical activation of minerals,” J. Aufbereitungs-technik, 30(10), 635 – 642 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Il’in.

Additional information

Translated from Steklo i Keramika, No. 1, pp. 21 – 30, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptitsyna, K.O., Il’in, A.A., Rumyantsev, R.N. et al. Mechanochemical and Ceramic Synthesis of Cobalt Ferrite. Glass Ceram 79, 15–21 (2022). https://doi.org/10.1007/s10717-022-00446-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-022-00446-9

Keywords

Navigation