Skip to main content
Log in

Influence of Grain Structure Features on the Thermoelectric Properties of Compounds Based on Bismuth Telluride

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

An analysis of the specific mechanisms of the influence of the state of the grain structure on the thermoelectric properties (electrical resistivity and total thermal conductivity) of the compound Bi1.9Gd0.1Te3 is presented. The following mechanisms are considered: 1) formation of Te surface vacancies at grain boundaries, which act as donor centers; 2) change in the elemental composition of grains on high-temperature evaporation of Te on heat treatment of the material aimed at obtaining samples with a controlled average grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Watanabe, “Grain boundary engineering: Historical perspective and future prospects,” J. Mater. Sci., 46, 4095 – 4115 (2011).

    Article  CAS  Google Scholar 

  2. I. P. Semenova, R. Z. Valiev, E. B. Yakushina, et al., “Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation,” J. Mater. Sci., 4, 7354 – 7359 (2008).

    Article  Google Scholar 

  3. N. Vandewalle, G. Lumay, O. Gerasimov, and F. Ludewig, “Influence of grain shape, friction and cohesion on granular compaction dynamics,” Eur. Phys. J. E., 22, 241 – 248 (2007).

    Article  CAS  Google Scholar 

  4. O. Ivanov, O. Maradudina, and R. Lyubushkin, “Grain size effect on electrical resistivity of bulk nanograined Bi2Te3 material,” Mater. Charact., 99, 175 – 179 (2015).

    Article  CAS  Google Scholar 

  5. W. Kim, “Strategies for engineering phonon transport in thermoelectrics,” J. Mater. Chem. C, No. 3, 10336 – 10348 (2015). URL: https://doi: https://doi.org/10.1039/C5TC01670C

  6. D. Choi, “The electron scattering at grain boundaries in tungsten films,” Microelectron. Eng., 122, 5 – 8 (2014).

    Article  CAS  Google Scholar 

  7. H. Wu, J. Carrete, Z. Zhang, et al., “Strong enhancement of phonon scattering through nanoscale grains in lead sulfide thermoelectrics,” NPG Asia. Mater., 6, 2 – 11 (2014).

    Google Scholar 

  8. G. J. Snyder, “Figure of merit ZT of a thermoelectric device defined from materials properties,” Energy Environ. Sci., 10, 2280 – 2283 (2017).

    Article  Google Scholar 

  9. Y. Zheng, T. J. Slade, L. Hu, et al., “Defect engineering in thermoelectric materials: what have we learned?,” Chem. Soc. Rev., 50, 9022 – 9054 (2021).

    Article  CAS  Google Scholar 

  10. C. Zhou, Y. K. Lee, J. Cha, et al., “Defect engineering for high-performance n-type PbSe thermoelectrics,” J. Am. Chem. Soc., 140, 9282 – 9290 (2018).

    Article  CAS  Google Scholar 

  11. H. J. Goldsmid, “Bismuth telluride and its alloys as materials for thermoelectric generation,” Mater., 7, 2577 – 2592.

  12. F. Wu, W. Shi, and X. Hu, “Preparation and thermoelectric properties of flower-like nanoparticles of Ce-doped Bi2Te3 ,” Electron. Mater. Lett., 11, 127 – 132 (2015).

    Article  CAS  Google Scholar 

  13. J. Yang, F. Wu, Z. Zhu, et al., “Thermoelectrical properties of lutetium-doped Bi2Te3 bulk samples prepared from flower-like nanopowders,” J. Alloys Compd., 619, 401 – 405 (2015).

    Article  CAS  Google Scholar 

  14. X. H. Ji, X. B. Zhao, Y. H. Zhang, et al., “Synthesis and properties of rare earth containing Bi2Te3 based thermoelectric alloys,” J. Alloys Compd., 387, 282 – 286 (2005).

    Article  CAS  Google Scholar 

  15. F. Wu, H. Song, J. Jia, and X. Hu, “Effects of Ce, Y, and Sm doping on the thermoelectric properties of Bi2Te3 alloy,” Prog. Nat. Sci. Mater. Int., 23, 408 – 412 (2013).

    Article  Google Scholar 

  16. F.Wu, H. Z. Song, J. F. Jia, et al., “Thermoelectric properties of Ce-doped n-type CexBi2–xTe2.7Se0.3 nanocomposites,” Phys. Stat. Sol. A, 210, 1183 – 1189 (2013).

    CAS  Google Scholar 

  17. M. Yapryntsev, A. Vasil’ev, and O. Ivanov, “Sintering temperature effect on thermoelectric properties and microstructure of the grained Bi1.9Gd0.1Te3 compound,” J. Europ. Cer. Soc., 39, 1193 – 1205 (2019).

    Article  Google Scholar 

  18. O. Ivanov, M. Yaprintsev, and A. Vasil’ev, “Comparative analysis of the thermoelectric properties of the non-textured and textured Bi1.9Gd0.1Te3 compounds,” J. Sol. St. Chem., 290, 121559 – 121658 (2020).

    Article  CAS  Google Scholar 

  19. M. Yaprintsev, A. Vasil’ev, and O. Ivanov, “Thermoelectric properties of the textured Bi1.9Gd0.1Te3 compounds sparkplasma- sintered at various temperatures,” J. Europ. Cer. Soc., 40, 742 – 750 (2020).

    Article  CAS  Google Scholar 

  20. J. K. L. Lai, C. H. Shek, and G. M. Lin, “Grain growth kinetics of nanocrystalline SnO2 for long-term isothermal annealing,” Sci. Mater., 49, 441 – 446 (2003).

    CAS  Google Scholar 

  21. Y. Pan, T. R.Wei, C. F.Wu, and J. F. Li, “Electrical and thermal transport properties of spark plasma sintered n-type Bi2Te3–x Sex alloys: the combined effect of point defect and Se content,” J. Mater. Chem. C, 3, 10583 – 10589 (2015).

    Article  CAS  Google Scholar 

  22. L. Hu, T. Zhu, X. Liu, and X. Zhao, “Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials,” Adv. Funct. Mater., 24, 5211 – 5218 (2014).

    Article  CAS  Google Scholar 

  23. J. Suh, K. M. Yu, D. Fu, et al., “Simultaneous enhancement of electrical conductivity and thermopower of Bi2Te3 by multifunctionality of native defects,” Adv. Mater., 27, 3681 – 3686 (2015).

    Article  CAS  Google Scholar 

  24. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford (2004).

    Google Scholar 

  25. J. Lee, A. Berger, L. U. Cagnon, et al., “Disproportionation of thermoelectric bismuth telluride nanowires as a result of the annealing process,” Phys. Chem. Chem. Phys., 12, 15247 – 15250 (2010).

    Article  CAS  Google Scholar 

Download references

The work was supported by the Ministry of Education and Science of the Russian Federation, project No. 0625-2020-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Ivanov.

Additional information

Translated from Steklo i Keramika, No. 1, pp. 3 – 11, January, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, O.N., Yapryntsev, M.N., Vasil’ev, A.E. et al. Influence of Grain Structure Features on the Thermoelectric Properties of Compounds Based on Bismuth Telluride. Glass Ceram 79, 3–8 (2022). https://doi.org/10.1007/s10717-022-00443-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-022-00443-y

Keywords

Navigation