Skip to main content
Log in

Control of Liquid Laser-Induced Etching of Quartz Glass

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The effect of the parameters of laser radiation and the composition of the etching solution on the length of hollow channels formed in quartz glass by a one-stage method of spatially selective liquid etching under the action of a femtosecond laser beam was investigated. Amulti-pass method was proposed, which significantly increased the channel length to 180 μm. Etching solutions that effectively dissolve the fractured layer of the formed channels can be used to obtain deeper and wider channels while maintaining high selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Bischof, M. Kahl, and M. Michler, “Laser-assisted etching of borosilicate glass in potassium hydroxide,” Opt. Mater. Express, 11(4), 1185 – 1195 (2021).

    Article  Google Scholar 

  2. J. Gottmann, M. Hermans, N. Repiev, and J. Ortmann, “Selective laser-induced etching of 3D precision quartz glass components for microfluidic applications — up-scaling of complexity and speed,” Micromachines, 8(4), 110 (2017).

  3. Y. Liao, J. Xu, H. Sun, et al., “Fabrication of microelectrodes deeply embedded in LiNbO3 using a femtosecond laser,” Appl. Surf. Sci., 254(21), 7018 – 7021 (2008).

    Article  CAS  Google Scholar 

  4. Z. Liu, J. Xu, Z. Lin, et al., “Fabrication of single-mode circular optofluidic waveguides in fused silica using femtosecond laser microfabrication,” Opt. Laser Technol., 141, 107118 (2021).

    Article  CAS  Google Scholar 

  5. J. Lv, B. Hong, Y. Tan, et al., “Mid-infrared waveguiding in three-dimensional microstructured optical waveguides fabricated by femtosecond-laser writing and phosphoric acid etching,” Photon. Res., 8, No. 3, 257 – 262 (2020).

    Article  CAS  Google Scholar 

  6. J. Qi, W. Li, W. Chu, et al., “A microfluidic mixer of high throughput fabricated in glass using femtosecond laser micromachining combined with glass bonding,” Micromachines, 11, No. 2, 213 (2020).

  7. J. Qi, Z. Wang, J. Xu, et al., “Femtosecond laser induced selective etching in fused silica: optimization of the inscription conditions with a high-repetition-rate laser source,” Opt. Express, 26(23), 29669 – 29678 (2018).

    Article  CAS  Google Scholar 

  8. M. Beresna, M. Gecevièius, M. Lancry, et al., “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett., 103(13), 131903 (2013).

  9. S. V. Lotarev, S. S. Fedotov, A. I. Kurina, et al., “Ultrafast laser-induced nanogratings in sodium germanate glasses,” Opt. Lett., 44(7), 1564 – 1567 (2019).

    Article  CAS  Google Scholar 

  10. S. Richter, “Laser induced nanogratings beyond fused silica-periodic nanostructures in borosilicate glasses and ULE™,” Opt. Mater. Express, 3(8), 1161 – 1166 (2013).

    Article  Google Scholar 

  11. Y. Yu, Y. Chen, J. Chen, et al., “Fabrication of microchannels by space-selective control of phase separation in glass,” Opt. Lett., 41(14), 3371 – 3374 (2016).

    Article  CAS  Google Scholar 

  12. A. M. Shakhov, A. A. Astafiev, and V. A. Nadtochenko, “Physicochemical mechanisms of nanostructuring of glass by femtosecond laser pulses with the use of selective etching,” JETP Lett., 109(5), 292 – 297 (2019).

    Article  CAS  Google Scholar 

  13. X. W. Cao, Q. D. Chen, H. Fan, et al., “Liquid-assisted femtosecond laser precision-machining of silica,” Nanomaterials, 8(5), 287 (2018).

    Article  Google Scholar 

  14. T. T. Fernandez, M. Sakakura, S. M. Eaton, et al. “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Progr. Mater. Sci., 94, 68–113 (2018).

    Article  CAS  Google Scholar 

  15. S. Kim, J. Kim, Y. H. Joung, et al., “Optimization of selective laser-induced etching (SLE) for fabrication of 3D glass microfluidic devices with multi-layer micro channels,” Micro Nano Systems Lett., 7(1), 1–7 (2019).

    Article  Google Scholar 

  16. K. Hasse, G. Huber, and C. Kränkel, “Selective etching of fs-laser inscribed high aspect ratio microstructures in YAG,” Opt. Mater. Express, 9(9), 3627–3637 (2019).

    Article  CAS  Google Scholar 

  17. G. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci., 28(23), 6261–6273 (1993).

    Article  CAS  Google Scholar 

  18. C. A. Ross, D. G. MacLachlan, D. Choudhury, and R. R. Thomson, “Optimisation of ultrafast laser assisted etching in fused silica,” Opt. Express, 26(19), 24343–24356 (2018).

    Article  CAS  Google Scholar 

  19. K. K. Kwon, H. Kim, T. Kim, and C. N. Chu, “High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching,” J. Mater. Proc. Technol., 278, 116505 (2020).

    Article  CAS  Google Scholar 

  20. H. Niino, Y. Kawaguchi, T. Sato, et al., “Laser-induced backside wet etching of silica glass with ns-pulsed DPSS UV laser at the repetition rate of 40 kHz,” J. Phys.: Conf. Ser. (IOP Publishing), 59(1), 115 (2007).

  21. M. Y. Tsvetkov, V. I. Yusupov, N. V. Minaev, et al., “Effects of thermo-plasmonics on laser-induced backside wet etching of silicate glass,” Laser Phys. Lett., 13(10), 106001 (2016).

    Article  Google Scholar 

  22. R. Böhme, D. Hirsch, and K. Zimmer, “Laser etching of transparent materials at a backside surface adsorbed layer,” Appl. Surf. Sci., 252(13), 4763–4767 (2006).

    Article  Google Scholar 

  23. M. Y. Tsvetkov, N. V. Minaev, A. A. Akovantseva, et al., “Thermoplasmonic laser-induced backside wet etching of sapphire,” Quantum Electronics, 49(2), 133 (2019).

    Article  CAS  Google Scholar 

  24. J. Long, C. Zhou, et al., “Incubation effect during laser-induced backside wet etching of sapphire using high-repetition-rate near-infrared nanosecond lasers,” Opt. Laser Technol., 109, 61–70 (2019).

    Article  CAS  Google Scholar 

Download references

The Russian Science Foundation supported this work under RNF Grant No. 20-73-00144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Lipatieva.

Additional information

Translated from Steklo i Keramika, No. 9, pp. 3 – 8, September, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipatieva, T.O., Lipatiev, A.S., Kulakova, Y.V. et al. Control of Liquid Laser-Induced Etching of Quartz Glass. Glass Ceram 78, 345–349 (2022). https://doi.org/10.1007/s10717-022-00408-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-022-00408-1

Key words

Navigation