Skip to main content
Log in

Investigation of the Interaction of Y2O3–Al2O3–SiO2 Coatings with Water Vapor and Na2SO4 at Temperatures to 1450°C

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Coatings based on the system Y2O3–Al2O3–SiO2 are promising for protecting silicon carbide based materials from the effects of an oxidizing atmosphere, water vapor, and salt vapors. The interaction of Y2O3–Al2O3–SiO2 coatings, obtained by the sol-gel method, with water vapor and Na2SO4 salt was investigated. Coatings based on the yttrium aluminosilicate system were found to have good oxidative and chemical resistance to water vapor and Na2SO4 salt at temperatures 1300 – 1450°C. The weight gain for the coated samples tested in Na2SO4 salt vapor did not exceed 1%. The initial SiC substrates are characterized by active oxidation processes with weight reduction from 8 to 11%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. E. N. Kablov, Trends and Guidelines of Innovative Development in Russia: Inform. Materials [in Russian], VIAM, Moscow (2015).

  2. E. N. Kablov, “Next-generation materials — foundation of innovation, technological leadership, and national security of Russia,” Intellekt. Tekhnol., No. 2(14), 16 – 21 (2016).

  3. E. N. Kablov, “Innovative development work at FSUE VIAM SSC RF for the implementation of ‘Strategic directions for the development of materials and their processing technologies for the period up to 2030,” Aviats. Mater. Tekhnol., No. 1, 3 – 33 (2015).

  4. D. V. Grashchenkov, “Development strategy for non-metallic materials, metallic composite materials, and thermal protection,” Aviats. Mater. Tekhnol., No. S, 264 – 271 (2017).

  5. S. A. Evdokimov, N. Ye. Shchegoleva, and O. Yu. Sorokin, “Ceramic materials in aircraft engine construction (review),” Tr. VIAM: Electron. Nauch.-Tekhn. Zh., No. 12, Art. 06 (2018); URL: http://www.viamworks.ru (date of access: 10.05.2020).

  6. E. N. Kablov, B. E. Zhestkov, D. V. Grashchenkov, et al., “Investigation of the oxidative resistance of high temperature coating based on a SiC material under exposure to high-enthalpy flow,” High Temp., 55(6), 873 – 879 (2017).

    Article  CAS  Google Scholar 

  7. J. P. Dong II, J. Yang, H. G. Kim, et al., “Oxidation behavior of silicon carbide at 1200°C in both air and water-vapor-rich environments,” Corros. Sci., 88, 416 – 422 (2014).

    Article  Google Scholar 

  8. Y. G.Wang, Y. H. Wu, L. F. Cheng, and L. T. Zhang, “Hot corrosion behavior of barium aluminosilicate-coated C/SiC composites at 900°C,” J. Am. Ceram. Soc., 93, 204 – 208 (2009).

    Article  Google Scholar 

  9. B. T. Richards, S. Sehr, F. de Franqueville, et al., “Delamination of ytterbium monosilicate/mullite/silicon coated SiC during thermal cycling in water vapor,” Acta Mater., 103, 448 – 460 (2016).

    Article  CAS  Google Scholar 

  10. C. Cabet, “Review: Oxidation of SiC/SiC composites in low oxidizing and high temperature environment,” in: Materials Issues for Generation IV Systems (2008), pp. 351 – 366.

  11. K. N. Lee, D. S. Fox, J. I. Eldrige, et al., “Miller upper temperature limit of environmental barrier coatings based on mullite and BSAS,” J. Am. Ceram. Soc., 86(8), 1299 – 1306 (2003).

    Article  CAS  Google Scholar 

  12. S. Nathan, “Jacobson corrosion of silicon-based ceramics in combustion environments,” J. Am. Ceram. Soc., 76(1), 2 – 28 (1993).

    Google Scholar 

  13. M. E. Westwood, J. D. Webster, R. J. Day, et al., “Review oxidation protection for carbon fibre composites,” J. Mater. Sci., 31, 1389 – 1397 (1996).

    Article  CAS  Google Scholar 

  14. Laifei Cheng, Yongdong Xu, Litong Zhang, and Xingang Luan, “Corrosion of a 3D-C/SiC composite in salt vapor environments,” J. Carbon, 40, 877 – 882 (2002).

    Article  CAS  Google Scholar 

  15. K. N. Lee, D. S. Fox, and N. P. Bansal, “Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics,” J. Corros. Ceram. Matrix Comp., 25, 1705 – 1715 (2005).

    CAS  Google Scholar 

  16. N. A. Nasiri, N. Patra, D. Horlait, et al., “Thermal properties of rare-earth monosilicates for EBC on Si-based ceramic composites,” J. Am. Ceram. Soc., 99, 589 – 596 (2016).

    Article  Google Scholar 

  17. A. J. Fernandez-Carrion, M. Allix, and A. I. Becerro, “Thermal expansion of rare-earth pyrosilicates,” J. Am. Ceram. Soc., 96, 2298 – 2305 (2013).

    Article  CAS  Google Scholar 

  18. K. Liddell and D. P. Thompson, “X-Ray diffraction data for yttrium silicates,” British Ceram. Trans., 85, 17 – 22 (1986).

    CAS  Google Scholar 

  19. U. Kolitsch, H. J. Seifert, T. Ludwig, and F. Aldinger, “Phase equilibria and crystal chemistry in the Y2O3–Al2O3–SiO2 system,” J. Mater. Res., 14(2), 447 – 455 (1999).

    Article  CAS  Google Scholar 

  20. Yu. E. Lebedeva, N. V. Popovich, L. A. Orlova, et al., “Modifying additives affect the properties of Y2O3–Al2O3–SiO2 system,” Russ. J. Inorg. Chem., 62(8), 1032 – 1037 (2017).

    Article  CAS  Google Scholar 

  21. M. Aparicio and A. Durán, “Yttrium silicate coatings for oxidation protection of carbon-silicon carbide composites,” J. Am. Ceram. Soc., 83, 1351 – 1355 (2000).

    Article  CAS  Google Scholar 

  22. E. Courcot, F. Rebillat, F. Teyssandier, and C. Louchet Pouillerie, “Thermochemical stability of the Y2O3–SiO2 system,” J. Eurp. Ceram. Soc., 30, 905 – 910 (2010).

    Article  CAS  Google Scholar 

  23. Z. Sun, M. Li, and Y. Zhou, “Kinetics and mechanism of hot corrosion of γ-Y2Si2O7 in thin-film Na 2SO4 molten salt,” J. Am. Ceram. Soc., 91(7), 2236 – 2242 (2008).

    Article  CAS  Google Scholar 

  24. E. Courcot, F. Rebillat, F. Teyssandier, et al., “Thermochemical stability of the Y2O3–SiO2 system,” J. Eurp. Ceram. Soc., 30, 905 – 910 (2010).

    Article  CAS  Google Scholar 

  25. V. A. Voronov, Yu. E. Lebedeva, O. Yu. Sorokin, and M. L. Vaganova, “Investigation of the protective effect of the coating based on the yttrium aluminosilicate system on silicon carbide material under the influence of an oxidizing atmosphere,” Aviats. Mater. Tekhnol., No. 4, 63 – 73 (2018).

    Google Scholar 

  26. N. A. Toropov and V. P. Barzakovskii, Handbook of Phase Diagrams of Silicate Systems [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  27. A. V. Kasatkin and V. S. Terent’eva, “Scientific principles of creating multifunctional high-temperature protective coatings on heat-resistant materials,” Korroz.: Mater., Zashch., No. 8, 9 – 17 (2007).

  28. J. A. Geodakyan and S. V. Stepanyan, “Some methodological issues of DTA glasses,” Fiz. Khim. Stekla, 8(5), 622 – 628 (1982).

    CAS  Google Scholar 

  29. V. I. Alekseenko, G. K. Volkova, I. B. Popova, et al., “Behavior of glass transition and crystallization temperatures of oxide glass MgO–Al2O3–SiO2 under external influences,” Zh. Tekh. Fiz., 67(10), 30 – 34 (1997).

    CAS  Google Scholar 

Download references

This work was performed within the framework of the implementation of the complex scientific direction 14.1: Structural ceramic composite materials (‘Strategic directions for the development of materials and their processing technologies for the period up to 2030’) [4].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Lebedeva.

Additional information

Translated from Steklo i Keramika, No. 8, pp. 3 – 11, August, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, Y.E., Chainikova, A.S., Shchegoleva, N.E. et al. Investigation of the Interaction of Y2O3–Al2O3–SiO2 Coatings with Water Vapor and Na2SO4 at Temperatures to 1450°C. Glass Ceram 78, 301–307 (2021). https://doi.org/10.1007/s10717-021-00400-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00400-1

Key words

Navigation