Skip to main content
Log in

Thermal Transformations in Hardening Compositions Based on Hydroxyapatite, Monocalcium Phosphate Monohydrate, and Polymeric Binders

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Hardening composite materials based on calcium phosphates (hydroxyapatite, monocalcium phosphate monohydrate) and polymer binders (polyvinyl alcohol, polyvinylpyrrolidone) were obtained. It was found that the amount of brushite and tricalcium phosphate grows with increasing calcium acid phosphate content in the composition. The introduction of polymeric binders into the composition of hardening composite materials promotes growth of their mechanical strength and inhibition of structural-phase transformations of calcium phosphates at 800°C. Compositions based on 5% solutions of polymers and powders of hydroxyapatite or its mixtures with weight content 10 – 40% monocalcium phosphate monohydrate can be used as a consumable for 3D printing of calcium phosphate biomaterials and ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. N. Musskaya, A. I. Kulak, V. K. Krutko, et al., “Obtaining bioactive mesoporous calcium phosphate granules,” Neorg. Mater., 88(2), 130 – 137 (2018); https://doi.org/10.7868/S0002337X18020033.

  2. V. K. Krutko, O. N. Musskaya, A. I. Kulak, and T. V. Safronova, “Thermal evolution of calcium-phosphate foam ceramics obtained on the basis of hydroxyapatite and monocalcium phosphate monohydrate,” in: V. M. Samsonov and N. Yu. Sdobnyakov (eds.), Physicochemical Aspects of the Study of Clusters, Nanostructures, and Nanomaterials, Collections of Scientific Works [in Russian], Tversk. Gos. Univer., Tver (2019), Issue 11, pp. 615 – 623; https://doi.org/10.26456/pcascnn/2019.11.615

  3. V. K. Krutko, A. I. Kulak, and O. N. Musskaya, “Thermal transformations in composite materials based on hydroxyapatite and zirconium dioxide,” Neorg. Mater., 53(4), 427 – 434 (2017). https://doi.org/10.7868/S0002337X17040091.

    Article  Google Scholar 

  4. V. V. Smirnov, D. R. Khairutdinova, O. S. Antonova, et al., “Composite cement materials based on calcium sulfate and phosphate for medicine,” Dokl. Akad. Nauk, 483(2), 162 – 165 (2018); https://doi.org/10.31857/S086956520003473-3.

  5. S. Hirayama, S. Takagi, M. Markovic, and L. C. Chow, “Properties of calcium phosphate cements with different tetracalcium phosphate and dicalcium phosphate anhydrous molar ratios,” J. Res. Natl. Inst. Stand. Technol., 113, 311 – 320 (2008); https://doi.org/10.6028/jres.113.025

    Article  CAS  Google Scholar 

  6. V. S. Komlev, I. V. Fadeeva, A. N. Gurin, et al., “New calcium phosphate cements based on tricalcium phosphate,” Dokl. Akad. Nauk, 437, No. 3, 366 – 369 (2011).

  7. H. Liu, H. Li, W. Cheng, et al., “Novel injectable calcium phosphate / chitosan composites for bone substitute materials,” Acta Biomateria, 2, 557 – 565 (2006). https://doi.org/10.1016/j.actbio.2006.03.007

    Article  Google Scholar 

  8. A. S. Fomin, I. V. Fadeeva, Ya. Yu. Filippov, et al., “Brushite cement based on β-tricalcium phosphate for orthopedics,” Perspekt. Mater., No. 9, 45 – 50 (2016).

  9. A. Yu. Teterina, A. A. Egorov, A. Yu. Fedotov, et al., “Bone cements in the calcium phosphate-chitosan system containing magnesium and zinc,” Dokl. Akad. Nauk, 468, No. 4, 413 – 415 (2016); https://doi.org/10.7868/S0869565216160131.

  10. S. M. Barinov and V. S. Komlev, “Calcium phosphate bone cements (review). Part I. Binding systems,” Materialovedenie, No. 1, 33 – 40 (2014).

  11. O. N. Musskaya, V. K. Krutko, A. I. Kulak, et al., “Calcium phosphate compositions with polyvinyl alcohol for 3D printing,” Materialovedenie, No. 7, 23 – 28 (2019). https://doi.org/10.31044/1684-579X-2019-0-7-23-28.

  12. Y. Y. Filippov, A. A. Vlasikhina, E. S. Klimashina, et al., “Creation of three-dimensional ceramic structures with prescribed architecture based on the system Ca2P2O7 – CaNa2P2O7,” Steklo Keram., No. 11, 35 – 39 (2018); Y. Y. Filippov, A. A. Vlasikhina, E. S. Klimashina, et al., “Creation of three-dimensional ceramic structures with prescribed architecture based on the system Ca2P2O7 – CaNa2P2O7,” Glass Ceram., 75(11 – 12), 446 – 450 (2019); https://doi.org/10.1007/s10717-019-00109-2.

  13. L. S. Bertol, R. Schabbach, and L. A. L. Santos, “Dimensional evaluation of patient-specific 3D printing using calcium phosphate cement for craniofacial bone reconstruction,” J. Biomater. Appl., 31(6), 799 – 806 (2016); https://doi.org/10.1177/0885328216682672.

    Article  CAS  Google Scholar 

  14. V. V. Smirnov, “Porous cements for filling bone tissue defects,” Materialovedenie, No. 8, 16 – 19 (2009).

  15. A. Ratier, M. Freche, J. L. Lacout, and F. Rodriguez, “Behaviour of an injectable calcium phosphate cement with added tetracycline,” Int. J. Pharm., 274, 261 – 268 (2004). https://doi.org/10.1016/j.ijpharm.2004.01.021.

    Article  CAS  Google Scholar 

  16. U. Joosten, A. Joist, G. Gosheger, et al., “Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis,” Biomaterials, 26, 5251 – 5258 (2005); https://doi.org/10.1016/j.biomaterials.2005.01.001.

    Article  CAS  Google Scholar 

  17. O. N. Musskaya, A. I. Kulak, V. K. Krutko, and I. E. Glazov, “Adsorption properties of xerogels of calcium phosphates obtained by liquid-phase synthesis,” in: V. M. Samsonov and N. Yu. Sdobnyakov (eds.), Physicochemical Aspects of Studying Clusters, Nanostructures and Nanomaterials, Collection of Scientific Works [in Russian], Tversk. Gos. Univer., Tver (2018), Issue 10, pp. 468 – 476; https://doi.org/10.26456/pcascnn/2018.10.468.

  18. V. K. Krutko, A. I. Kulak, O. N. Musskaya, et al., “Calcium phosphate ceramics based on a powder mixture of hydroxyapatite – brushite,” Steklo Keram., No. 3, 38 – 44 (2019); V. K. Krutko, A. I. Kulak, O. N. Musskaya, et al., “Calcium phosphate foam ceramic based on hydroxyapatite–brushite powder mixture,” Glass Ceram., 76(3 – 4), 113 – 118 (2019). https://doi.org/10.1007/s10717-019-00145-y.

  19. Y. Ma, T. Bai, and F. Wang, “The physical and chemical properties of the polyvinylalcohol/polyvinylpyrrolidone/hydroxyapatite composite hydrogel,” Mater. Sci. Eng. C, 59, 948 – 957 (2016); https://doi.org/10.1016/j.msec.2015.10.081.

    Article  CAS  Google Scholar 

Download references

This work was supported under the SPSR program ‘Chemical technologies and materials’ (task 1.04) and RFBR grant No. 18-53-00034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Musskaya.

Additional information

Translated from Steklo i Keramika, No. 7, pp. 13 – 20, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musskaya, O.N., Krut’ko, V.K., Kulak, A.I. et al. Thermal Transformations in Hardening Compositions Based on Hydroxyapatite, Monocalcium Phosphate Monohydrate, and Polymeric Binders. Glass Ceram 77, 256–262 (2020). https://doi.org/10.1007/s10717-020-00283-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-020-00283-8

Key words

Navigation