Skip to main content
Log in

Particulars of Femtosecond Laser Modification of Antimony-Silicate Glass

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The particulars of the effect of focused femtosecond laser pulses on antimony silicate glass with the composition 25Sb2O3∙75SiO2 % (molar content) in thermal and athermal regimes were studied. It was found that in contrast to quartz, alkali silicate, and some borosilicate glasses the birefringence of the form characteristic for the formation of nanogratings does not arise in the laser-modified zones of the studied glass. Weak birefringence with slow axis parallel to the polarization plane of the writing laser beam, accompanied by precipitation of crystalline phases, seemingly including the cubic modification of Sb2O3, arises in the modified zones under irradiation by 106 pulses with energy > 100 nJ and repetition frequency 10 and 200 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. K. Sugioka, “Progress in ultrafast laser processing and future prospects,” Nanophotonics, 6, 393 – 413 (2016).

    Google Scholar 

  2. D. M. Krol, “Femtosecond laser modification of glass,” J. Non-Cryst. Solids, 354, 416 – 424 (2008).

    Article  CAS  Google Scholar 

  3. K. Mishchik, C. D’Amico, P. K. Velpula, et al., “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Optics, 114, 133502 (2013).

    Google Scholar 

  4. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett., 91, 247405 (2003).

    Article  Google Scholar 

  5. J. Zhang, M. Gecevièius, M. Beresna, and P. G. Kazansky, “Seemingly unlimited lifetime data storage in nanostructured glass,” Phys. Rev. Lett., 112, 033901 (2014).

    Article  Google Scholar 

  6. M. Beresna, M. Gecevièius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett., 98, 201101 (2011).

    Article  Google Scholar 

  7. C. Hnatovsky, R. S. Taylor, E. Simova, et al., “Fabrication of microchannels in glass using focused femtosecond laser irradiation and selective chemical etching,” Appl. Phys. A, 84, 47 – 61 (2006).

    Article  CAS  Google Scholar 

  8. M. Shimizu, M. Sakakura, S. Kanehira, et al., “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett., 36, 2161 – 2163 (2011).

    Article  CAS  Google Scholar 

  9. T. Komatsu and T. Honma, “Laser patterning and growth mechanism of orientation designed crystals in oxide glasses: A review,” J. Solid State Chem., 276, 210 – 222 (2019).

    Article  Google Scholar 

  10. S. Richter, C. Miese, S. Doring, et al., “Laser induced nanogratings beyond fused silica – periodic nanostructures in borosilicate glasses and ULE,” Opt. Mater. Express, 3, 1161 – 1166 (2013).

    Article  Google Scholar 

  11. S. S. Fedotov, A. S. Lipat’ev, S. V. Lotarev, and N. V. Sigaev, “Local formation of birefringent structures in alkali-silicate glass by femtosecond laser beam,” Steklo Keram., No. 7, 3 – 6 (2017); S. S. Fedotov, A. S. Lipat’ev, S. V. Lotarev, and N. V. Sigaev, “Local formation of birefringent structures in alkali-silicate glass by femtosecond laser beam,” Glass Ceram., 74(7 – 8), 227 – 229 (2017).

  12. S. Lotarev, S. Fedotov, A. Lipatiev, et al., “Light-driven nanoperiodical modulation of alkaline cation distribution inside sodium silicate glass,” J. Non-Cryst. Solids, 479, 49 – 54 (2018).

    Article  CAS  Google Scholar 

  13. F. Zimmermann, A. Plech, S. Richter, et al., “Ultrashort laser pulse induced nanogratings in borosilicate glass,” Appl. Phys. Lett., 104, 211107 (2014).

    Article  Google Scholar 

  14. S. S. Fedotov, R. Drevinskas, S. V. Lotarev, et al., “Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass,” Appl. Phys. Lett, 108, 071905 (2016).

    Article  Google Scholar 

  15. S. V. Lotarev, A. S. Lipat’ev, S. S. Fedotov, et al., “Laser writing of polarization-sensitive birefringence in sodium-borosilicate glass,” Steklo Keram., No. 3, 3 – 8 (2019); S. V. Lotarev, A. S. Lipat’ev, S. S. Fedotov, et al., “Laser writing of polarization-sensitive birefringence in sodium-borosilicate glass,” Glass Ceram., 76(3 – 4), 85 – 88 (2019).

  16. J. Cao, B. Poumellec, L Mazerolles, et al., “Nanoscale phase separation in lithium niobium silicate glass by femtosecond laser irradiation,” J. Am. Ceram. Soc., 100, 115 – 124 (2017).

  17. M. Lancry, J. Canning, K. Cook, et al., “Nanoscale femtosecond laser milling and control of nanoporosity in the normal and anomalous regimes of GeO2–SiO2 glasses,” Opt. Mater. Express, 6, 321 – 330 (2016).

    Article  CAS  Google Scholar 

  18. A. J. G. Ellison and S. Sen, “Role of Sb3+ as a network-forming cation in oxide glasses,” Phys. Rev. B, 67, 052203 (2003).

    Article  Google Scholar 

  19. A. B. Atkarskaya and V. N. Bykov, “Clarification of glass using arsenic and antimony oxides,” Steklo Keram., No. 12. 5 – 7 (2003); A. B. Atkarskaya and V. N. Bykov, “Clarification of glass using arsenic and antimony oxides,” Glass Ceram., 60(11 – 12), 389 – 391 (2003).

  20. V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, and A. N. Ignatov, Method of Producing Optical Sitall, RF Pat. No. 2569703, C03C 10/12 [in Russian], published April 27, 2009.

  21. V. I. Savinkov, G. Yu. Shakhgil’dyan, A. S. Naumov, et al., “Effect of antimony oxide on the particularities of the crystallization of lithium-aluminum-silicate glasses,” Steklo Keram., No. 10, 30 – 34 (2019).

  22. M. Mee, B. C. Davies, R. G. Orman, et al., “Antimony and silica environments in antimony silicate glasses,” J. Solid State Chem., 183, 1925 – 1934 (2010).

    Article  CAS  Google Scholar 

  23. S. M. Eaton, H. Zhang, P. R. Herman, et al., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express, 13, 4708 – 4716 (2005).

    Article  Google Scholar 

  24. Z. Sui, S. Hu, H. Chen, et al., “Laser effects on phase transition for cubic Sb2O3 microcrystals under high pressure,” J. Mater. Chem. C, 5, 5451 – 5457 (2017).

    Article  CAS  Google Scholar 

  25. A. L. J. Pereira, L. Gracia, D. Santamaria-Pérez, et al., “Structural and vibrational study of cubic Sb2O3 under high pressure,” Phys. Rev. B, 85, 174108 (2012).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Russian Science Foundation (grant 19-19-00613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lipat’ev.

Additional information

Translated from Steklo i Keramika, No. 11, pp. 8 – 12, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipat’ev, A.S., Lotarev, S.V., Fedotov, S.S. et al. Particulars of Femtosecond Laser Modification of Antimony-Silicate Glass. Glass Ceram 76, 406–409 (2020). https://doi.org/10.1007/s10717-020-00211-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-020-00211-w

Key words

Navigation