Advertisement

Glass and Ceramics

, Volume 73, Issue 1–2, pp 47–52 | Cite as

Structural Characteristics and Thermophysical Properties of Complex Ceramic Oxides in the System Dy2O3–HfO2

  • V. V. PopovEmail author
  • A. P. Menushenkov
  • Ya. V. Zubavichus
  • S. A. Korovin
  • E. A. Fortal’nova
  • A. B. Kruglov
  • V. B. Kruglov
  • É. S. Kulik
  • A. A. Pisarev
Article
  • 100 Downloads

The structure and thermophysical properties of materials formed in the system Dy2O3–HfO2 (molar ratio 1 : 3 to 3 : 1) as a result of isothermal firing of x-ray amorphous mixed hydroxides at temperature to 1600°C are investigated. It is shown that for ratios 1 : 3 to 1 : 1 the crystallization process results in the formation of single-phase solid solutions with the structure of defective fluorite and marked nonequivalence of the parameters of the local environment of the Dy and Hf atoms. It is determined that the ceramic based on dysprosium hafnate (Dy2O3: HfO2 = 1 : 1) possesses low, practically temperature independent (to 800°C), thermal conductivity about 1.4 W/(m · K).

Key words

dysprosium hafnate crystal lattice fluorite thermal conductivity 

Notes

The Russian Scientific Foundation provided partial support for this work under grant No. 14-22-00098.

We thank Doctor of Chemical Sciences Profession A. V. Belyakov who was deeply familiar with the material presented here and made a number of valuable remarks.

References

  1. 1.
    M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, “Oxide pyrochlores – A review,” Prog. Solid State Chem., 15(2), 55 – 143 (1983).CrossRefGoogle Scholar
  2. 2.
    P. A. Arsen’ev, V. B. Glushkova, A. A. Evdokimov, et al., Compounds of Rare Earth Elements: Zirconates, Hafnates, Niobates, Tantalates, Antimonides [in Russian], Nauka, Moscow (1985).Google Scholar
  3. 3.
    V. N. Vladimirov, E. S. Lukin, N. A. Popova, et al., “New types of refractory heat-insulation materials for long-term use at extremely high temperature,” Steklo Keram., No. 4, 14 – 21 (2011); V. S. Vladimirov, E. S. Lukin, N. A. Popova, et al., “New types of light-weight refractory and heat-insulation materials for long-term use at extremely high temperatures,” Glass Ceram., 68(3 – 4), 116 – 122 (2011).Google Scholar
  4. 4.
    A. V. Shlyakhtina and L. G. Shcherbakova, “New solid electrolytes of the pyrochlore family,” Russ. J. Electrochem., 48(1), 1 – 25 (2012).CrossRefGoogle Scholar
  5. 5.
    V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., “Dysprosium hafnate as absorbing material for control rods,” J. Nucl. Mater., 355(1), 163 – 170 (2006).CrossRefGoogle Scholar
  6. 6.
    R. C. Ewing, W. J. Weber, and J. Lian, “Nuclear waste disposal–pyrochlore A2B2O7: Nuclear waste form for the immobilization of plutonium and ‘minor’ actinides,” J. Appl. Phys., 95(11), 5949 – 5971 (2004).CrossRefGoogle Scholar
  7. 7.
    J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, “Magnetic pyrochlore oxides,” Rev. Modern Phys., 82(1), 53 – 107 (2010).CrossRefGoogle Scholar
  8. 8.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., “Characteristic features of the nanocrystalline structure formation in Ln2Hf2O7 (Ln = Gd, Dy) compounds,” Russ. J. Inorg. Chem., 58(12), 1400 – 1407 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Emsley, The Elements [Russian translation], Mir, Moscow (1993).Google Scholar
  10. 10.
    E. R. Andrievskaya, “Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with the rare-earth oxides,” J. Eur. Ceram. Soc., 28(12), 2363 – 2388 (2008).CrossRefGoogle Scholar
  11. 11.
    C. R. Stanek and R. W. Grimes, “Prediction of rare-earth A2Hf2O7 pyrochlore phases,” J. Am. Ceram. Soc., 85(8), 2139 – 2141 (2002).CrossRefGoogle Scholar
  12. 12.
    X. T. Zu, N. Li, and F. Gao, “First-principles study of structural and energetic properties of A2Hf2O7 (A = Dy, Ho, Er) compounds,” J. Appl. Phys., 104, 043517(4) (2008).CrossRefGoogle Scholar
  13. 13.
    B. P. Mandal, N. Garg, and S. M. Sarma, “Preparation, XRD and Raman spectroscopic studies on new compounds E2Hf2O7 (RE = Dy, Ho, Er, Tm, Lu, Y): Pyrochlores or defect-fluorite?,” J. Solid State Chem., 179(7), 1990 – 1994 (2006).CrossRefGoogle Scholar
  14. 14.
    V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., “Lanthanide effect on the formation and evolution of nanocrystalline structures in Ln2Hf2O7 compounds (Ln = Sm–Dy),” Russ. J. Inorg. Chem., 60(1), 16 – 22 (2015).CrossRefGoogle Scholar
  15. 15.
    A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., “Two-dimensional detector software: From real detector to idealized image or two-theta scan,” High Press. Res., 14(4 – 6), 235 – 248 (1996).CrossRefGoogle Scholar
  16. 16.
    V. Petricek, M. Dusek, L. Palatinus, Jana: The Crystallographic Computing System, Inst. Physics, Praha, Czech. Republic (2006).Google Scholar
  17. 17.
    V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., “Trends in formation of the nanocrystalline structure and cationic ordering in the Dy2O3–HfO2 (1 : 1) system,” Russ. J. Inorg. Chem., 58(3), 331 – 337 (2013).Google Scholar
  18. 18.
    V. V. Popov, V. F. Petrunin, and S. A. Korovin, Method of Obtaining Nanocrystalline Powders and Ceramic Materials Based on Mixed Oxides of Rare-Earth Elements and Methods of Subgroup IVB, RF Patent 2467983, IPC C04B 35/46; published Nov. 27, 2012.Google Scholar
  19. 19.
    A. V. Belyakov and E. B. Bendovskii, “Fabrication of single-phase dense ceramic from high-sintering complex oxides,” Steklo Keram., No. 6, 23 – 28 (2015); A. V. Belyakov and E. B. Bendovskii, “Fabrication of single-phase dense ceramic from high-sintering complex oxides new types of light-weight refractory and heat-insulation materials for long-term use at extremely high temperatures,” Glass Ceram., 72(5 – 6), 206 – 211 (2015).Google Scholar
  20. 20.
    G. Panneerselvam, R. Venkata Krishnan, N. Nagarajan, et al., “Thermal expansion and heat capacity of dysprosium hafnate,” J. Therm. Anal. Calorim., 101(1), 169 – 173 (2010).CrossRefGoogle Scholar
  21. 21.
    V. G. Toporova, V. V. Pimenov, V. D. Risovanyi, et al., “Results of SM reactor tests of dysprosium hafnate,” Atomic Energy, 110(4), 259 – 264 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • V. V. Popov
    • 1
    Email author
  • A. P. Menushenkov
    • 1
  • Ya. V. Zubavichus
    • 2
  • S. A. Korovin
    • 1
  • E. A. Fortal’nova
    • 3
  • A. B. Kruglov
    • 1
  • V. B. Kruglov
    • 1
  • É. S. Kulik
    • 2
  • A. A. Pisarev
    • 1
  1. 1.National Nuclear Research University – Moscow Engineering Physics Institute (NIYaU MIFI)MoscowRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia
  3. 3.Peoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations