Skip to main content
Log in

Structural Characteristics and Thermophysical Properties of Complex Ceramic Oxides in the System Dy2O3–HfO2

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The structure and thermophysical properties of materials formed in the system Dy2O3–HfO2 (molar ratio 1 : 3 to 3 : 1) as a result of isothermal firing of x-ray amorphous mixed hydroxides at temperature to 1600°C are investigated. It is shown that for ratios 1 : 3 to 1 : 1 the crystallization process results in the formation of single-phase solid solutions with the structure of defective fluorite and marked nonequivalence of the parameters of the local environment of the Dy and Hf atoms. It is determined that the ceramic based on dysprosium hafnate (Dy2O3: HfO2 = 1 : 1) possesses low, practically temperature independent (to 800°C), thermal conductivity about 1.4 W/(m · K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, “Oxide pyrochlores – A review,” Prog. Solid State Chem., 15(2), 55 – 143 (1983).

    Article  Google Scholar 

  2. P. A. Arsen’ev, V. B. Glushkova, A. A. Evdokimov, et al., Compounds of Rare Earth Elements: Zirconates, Hafnates, Niobates, Tantalates, Antimonides [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  3. V. N. Vladimirov, E. S. Lukin, N. A. Popova, et al., “New types of refractory heat-insulation materials for long-term use at extremely high temperature,” Steklo Keram., No. 4, 14 – 21 (2011); V. S. Vladimirov, E. S. Lukin, N. A. Popova, et al., “New types of light-weight refractory and heat-insulation materials for long-term use at extremely high temperatures,” Glass Ceram., 68(3 – 4), 116 – 122 (2011).

  4. A. V. Shlyakhtina and L. G. Shcherbakova, “New solid electrolytes of the pyrochlore family,” Russ. J. Electrochem., 48(1), 1 – 25 (2012).

    Article  Google Scholar 

  5. V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., “Dysprosium hafnate as absorbing material for control rods,” J. Nucl. Mater., 355(1), 163 – 170 (2006).

    Article  Google Scholar 

  6. R. C. Ewing, W. J. Weber, and J. Lian, “Nuclear waste disposal–pyrochlore A2B2O7: Nuclear waste form for the immobilization of plutonium and ‘minor’ actinides,” J. Appl. Phys., 95(11), 5949 – 5971 (2004).

    Article  Google Scholar 

  7. J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, “Magnetic pyrochlore oxides,” Rev. Modern Phys., 82(1), 53 – 107 (2010).

    Article  Google Scholar 

  8. V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., “Characteristic features of the nanocrystalline structure formation in Ln2Hf2O7 (Ln = Gd, Dy) compounds,” Russ. J. Inorg. Chem., 58(12), 1400 – 1407 (2013).

    Article  Google Scholar 

  9. J. Emsley, The Elements [Russian translation], Mir, Moscow (1993).

    Google Scholar 

  10. E. R. Andrievskaya, “Phase equilibria in the refractory oxide systems of zirconia, hafnia and yttria with the rare-earth oxides,” J. Eur. Ceram. Soc., 28(12), 2363 – 2388 (2008).

    Article  Google Scholar 

  11. C. R. Stanek and R. W. Grimes, “Prediction of rare-earth A2Hf2O7 pyrochlore phases,” J. Am. Ceram. Soc., 85(8), 2139 – 2141 (2002).

    Article  Google Scholar 

  12. X. T. Zu, N. Li, and F. Gao, “First-principles study of structural and energetic properties of A2Hf2O7 (A = Dy, Ho, Er) compounds,” J. Appl. Phys., 104, 043517(4) (2008).

    Article  Google Scholar 

  13. B. P. Mandal, N. Garg, and S. M. Sarma, “Preparation, XRD and Raman spectroscopic studies on new compounds E2Hf2O7 (RE = Dy, Ho, Er, Tm, Lu, Y): Pyrochlores or defect-fluorite?,” J. Solid State Chem., 179(7), 1990 – 1994 (2006).

    Article  Google Scholar 

  14. V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., “Lanthanide effect on the formation and evolution of nanocrystalline structures in Ln2Hf2O7 compounds (Ln = Sm–Dy),” Russ. J. Inorg. Chem., 60(1), 16 – 22 (2015).

    Article  Google Scholar 

  15. A. P. Hammersley, S. O. Svensson, M. Hanfland, et al., “Two-dimensional detector software: From real detector to idealized image or two-theta scan,” High Press. Res., 14(4 – 6), 235 – 248 (1996).

    Article  Google Scholar 

  16. V. Petricek, M. Dusek, L. Palatinus, Jana: The Crystallographic Computing System, Inst. Physics, Praha, Czech. Republic (2006).

    Google Scholar 

  17. V. V. Popov, A. P. Menushenkov, Ya. V. Zubavichus, et al., “Trends in formation of the nanocrystalline structure and cationic ordering in the Dy2O3–HfO2 (1 : 1) system,” Russ. J. Inorg. Chem., 58(3), 331 – 337 (2013).

  18. V. V. Popov, V. F. Petrunin, and S. A. Korovin, Method of Obtaining Nanocrystalline Powders and Ceramic Materials Based on Mixed Oxides of Rare-Earth Elements and Methods of Subgroup IVB, RF Patent 2467983, IPC C04B 35/46; published Nov. 27, 2012.

  19. A. V. Belyakov and E. B. Bendovskii, “Fabrication of single-phase dense ceramic from high-sintering complex oxides,” Steklo Keram., No. 6, 23 – 28 (2015); A. V. Belyakov and E. B. Bendovskii, “Fabrication of single-phase dense ceramic from high-sintering complex oxides new types of light-weight refractory and heat-insulation materials for long-term use at extremely high temperatures,” Glass Ceram., 72(5 – 6), 206 – 211 (2015).

  20. G. Panneerselvam, R. Venkata Krishnan, N. Nagarajan, et al., “Thermal expansion and heat capacity of dysprosium hafnate,” J. Therm. Anal. Calorim., 101(1), 169 – 173 (2010).

    Article  Google Scholar 

  21. V. G. Toporova, V. V. Pimenov, V. D. Risovanyi, et al., “Results of SM reactor tests of dysprosium hafnate,” Atomic Energy, 110(4), 259 – 264 (2011).

    Article  Google Scholar 

Download references

The Russian Scientific Foundation provided partial support for this work under grant No. 14-22-00098.

We thank Doctor of Chemical Sciences Profession A. V. Belyakov who was deeply familiar with the material presented here and made a number of valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Translated from Steklo i Keramika, No. 2, pp. 11 – 17, February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Menushenkov, A.P., Zubavichus, Y.V. et al. Structural Characteristics and Thermophysical Properties of Complex Ceramic Oxides in the System Dy2O3–HfO2 . Glass Ceram 73, 47–52 (2016). https://doi.org/10.1007/s10717-016-9823-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-016-9823-x

Key words

Navigation