Skip to main content
Log in

Natural Mechanisms of Mechanochemical Interactions in Oxide Powders

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The effect of hydroxyl and other functional groups on mechanochemical interactions in oxide powders is shown. The general rules of non-covalent mechanochemical synthesis are established. Phenomenological models are discussed and the kinetic equations of mechanochemical synthesis are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. R. West, Solid State Chemistry and Its Applications, Mir, Moscow (1988).

    Google Scholar 

  2. E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies, Kluwer Academic Publishers, NY (2002).

    Google Scholar 

  3. P. Baláž, Mechanochemistry in Nanoscience and Minerals Engineering, Springer-Verlag Berlin Heidelberg, Berlin (2008).

    Google Scholar 

  4. V. V. Boldyrev and K. Tkáčvá, “Mechanochemistry of solids: past, present, and prospects,” J. Mater. Synthesis Proc., 8(3/4), 121 – 132 (2000).

    Article  Google Scholar 

  5. V. V. Zyryanov, “Mechanochemical synthesis of complex oxides,” Usp. Khim., 77(2), 107 – 137 (2008).

    Article  Google Scholar 

  6. E. G. Avvakumov and V. A. Pushnyakova, “Mechanochemical synthesis of oxides,” Khim. Tekhnol., No. 5, 6 – 17 (2002).

  7. Q. Zhang and F. Saito, “A review on mechanochemical syntheses of functional materials,” Adv. Powder Technol., 23(5), 523 – 531 (2012).

    Article  Google Scholar 

  8. V. Yu. Prokof’ev and N. E. Gordina, “Comminution and mechanochemical activation in oxide ceramics technology (review),” Steklo Keram., No. 2, 29 – 34 (2012); V. Yu. Prokof’ev and N. E. Gordina, “Comminution and mechanochemical activation in oxide ceramics technology (review),” Glass Ceram., 69(1 – 2), 65 – 70 (2012).

  9. V. Yu. Prokof’ev, V. V. Kuznetsov, S. M. Grudtsin, and M. G. Kalashnikova, “Investigation of the catalyst Ni/K2O–Al2O for steam conversion of methane,” Zh. Prikl. Khim., 82(3), 462 – 466 (2009).

    Google Scholar 

  10. A. V. Kunin, V. Yu. Prokof’ev, and A. P. Il’in, “Synthesis of aluminum titanate using stabilizing additives,” Steklo Keram., No. 4, 20 – 23 (1999); A. V. Kunin, V. Yu. Prokof’ev, and A. P. Il’in, “Synthesis of aluminum titanate using stabilizing additives,” Glass Ceram., 56(3 – 4), 113 – 116 (1999).

  11. V. Yu. Prokof’ev, A. V. Kunin, A. P. Il’in, et al., “Use of the methods of mechanochemistry for synthesis of cordierite carriers of catalysts,” Zh. Prikl. Khim., 70(10), 1655 – 1659 (1997).

    Google Scholar 

  12. V. Yu. Prokof’ev, O. N. Zakharov, and P. B. Razgovorov, “Physical–chemical phenomena occurring during the production of sorbent from a clay–dolomite composition,” Steklo Keram., No. 4, 32 – 35 (2009); V. Yu. Prokof’ev, O. N. Zakharov, and P. B. Razgovorov, “Physical–chemical phenomena occurring during the production of sorbent from a clay–dolomite composition,” Glass Ceram., 66(3 – 4), 147 – 150 (2009).

  13. V. Yu. Prokof’ev, A. P. Il’in, and T. V. Sazanova, “Combined mechanical activation of hydrargillite and calcium compounds,” Neorg. Mater., 36(9), 1076 – 1081 (2000).

    Google Scholar 

  14. A. B. Zhidkova, V. Yu. Prokof’ev, and N. E. Gordina, “X-ray diffraction study of solid-phase synthesis of sodium aluminosilicates with zeolite structure,” Izv. Vyssh. Ucheb. Zaved., Ser. Khimiya Khim. Tekhnol., 53(12), 127 – 131 (2010).

    Google Scholar 

  15. V. Yu. Prokof’ev, N. E. Gordina, A. B. Zhidkova, and A. M. Efremov, “Mechanochemical synthesis of granulated LTA zeolite from metakaolin,” J. Mater. Sci., 47(14), 5385 – 5392 (2012).

    Article  Google Scholar 

  16. V. Yu. Prokof’ev, N. E. Gordina, and A. B. Zhidkova, “Investigation of mechanochemical synthesis of zeolite NaA from metakaolin in mills with impact-shear loading, Zh. Prikl. Khim., 85(7), 1108 – 1113 (2012).

    Google Scholar 

  17. M. E. Davis, “Strategies for zeolite synthesis by design,” Studies Surf. Sci. Catal., 97, 35 – 43 (1995).

    Article  Google Scholar 

  18. J. L. Anthony and M. E. Davis, “Assembly of zeolites and crystalline molecular sieves,” in: M. Adachi and D. J. Lockwood (eds.), Self-Organized Nanoscale Materials, Springer Science, NY (2006), pp. 159 – 185.

    Chapter  Google Scholar 

  19. V. Yu. Prokof’ev, A. P. Il’in, Yu. G. Shirokov, and V. I. Yagodkin, “Mechanochemical synthesis of calcium aluminates,” Izv. Vyssh. Uchebn. Zaved., Ser. Khimiya Khim. Tekhnol., 38(4 – 5), 28 – 32 (1995).

    Google Scholar 

  20. N. V. Leshchev, V. Yu. Prokof’ev, and N. E. Gordina, “Investigation of mechanochemical synthesis of sodium aluminates with impact-shear loading,” Izv. Vyssh. Uchebn. Zaved., Ser. Khimiya Khim. Tekhnol., 53(11), 81 – 83 (2010).

    Google Scholar 

  21. B. D. Summ and N. I. Ivanova, “Objects and methods of colloidal chemistry in nanochemistry,” Usp. Khim., 69(11), 995 – 1008 (2000).

    Article  Google Scholar 

  22. F. Delogu, C. Deidda, G. Mulas, et al., “Quantitative approach to mechanochemical processes,” J. Mater. Sci., 39(16 – 17), 5121 – 5124 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Prokof’ev.

Additional information

Translated from Steklo i Keramika, No. 1, pp. 11 – 16, January, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokof’ev, V.Y., Gordina, N.E. Natural Mechanisms of Mechanochemical Interactions in Oxide Powders. Glass Ceram 71, 10–14 (2014). https://doi.org/10.1007/s10717-014-9605-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-014-9605-2

Key words

Navigation