Skip to main content
Log in

Optical behaviors of black holes in Starobinsky–Bel–Robinson gravity

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Inspired by M-theory scenarios, we investigate optical properties of black holes in the Starobinsky–Bel–Robinsion gravity. Precisely, we study the shadows and the deflection angle of light rays by this class of black holes in such a novel gravity. First, we approach the shadows of the Schwarzschild-type solutions. As expected, we find perfect circular shadows where the size decreases with a stringy gravity parameter denoted by \(\beta \). We reveal that this parameter is constrained by the shadow existence. Combining the Newman–Janis algorithm and the Hamilton–Jacobi mechanism, we examine the shadow behaviors of the rotating solutions in terms of one-dimensional real curves. Precisely, we obtain various sizes and shapes depending on the rotating parameter and the stringy gravity parameter a and \(\beta \), respectively. To examine the shadow geometric deformations, we study the astronomical observables and the energy emission rate. As envisaged, we show that a and \(\beta \) have an impact on such shadow behaviors. For specific values of a, we remark that the obtained shadow shapes share certain similarities with the ones of the Kerr black holes in the plasma backgrounds. Using the Event Horizon Telescope observational data, we provide predictions for the stringy gravity parameter \(\beta \) which could play a relevant role in the M-theory compactifications. After that, we discuss the behaviors of the light rays near to such four dimensional black holes by calculating the deflection angle in terms of a required moduli space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No data are associated with this article.

References

  1. Abbott, B.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). arXiv:1602.03837

    ADS  MathSciNet  Google Scholar 

  2. Akiyama, K.: First M87 event horizon telescope results: IV—imaging the central supermassive black hole. Astrophys. J. L4(1), 875 (2019). arXiv:1906.11241

    Google Scholar 

  3. Akiyama, K.: First M87 event horizon telescope results: V—imaging the central supermassive black hole. Astrophys. J. L5(1), 875 (2019)

    Google Scholar 

  4. Akiyama, K.: First M87 event horizon telescope results: VI—imaging the central supermassive black hole. Astrophys. J. L6(1), 875 (2019)

    Google Scholar 

  5. Hawking, S.W., Reall, H.S.: Charged and rotating AdS black holes and their CFT duals. Phys. Rev. D 61, 024014 (2000). arXiv:hep-th/9908109

    ADS  MathSciNet  Google Scholar 

  6. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999). arXiv:hep-th/9902170

    ADS  MathSciNet  Google Scholar 

  7. Rajagopal, A., Kubiznak, D., Mann, R.B.: Van der Waals black hole. Phys. Lett. B 737, 277 (2014). arXiv:1408.1105

    ADS  MathSciNet  MATH  Google Scholar 

  8. Kubiznak, D., Mann, R.B., Teo, M.: Black hole chemistry: thermodynamics with Lambda. Class. Quant. Grav. 34, 063001 (2017). arXiv:1608.06147

    ADS  MathSciNet  MATH  Google Scholar 

  9. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87(4), 577 (1983)

    ADS  MathSciNet  Google Scholar 

  10. Gibbons, G.W., Perry, M.J., Pope, C.N.: The first law of thermodynamics for Kerr-Anti-de Sitter black holes. Class. Quant. Grav. 22, 1503 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Belhaj, A., Chabab, M., El Moumni, H., Sedra, M.B.: On thermodynamics of AdS black holes in arbitrary dimensions. Chin. Phys. Lett. 29, 100401 (2012)

    ADS  Google Scholar 

  12. Barzi, F., El Moumni, H.: On Rényi universality formula of charged flat black holes from Hawking-Page phase transition. Phys. Lett. B 833, 137378 (2022)

    MATH  Google Scholar 

  13. Belhaj, A., El Balali, A., El Hadri, W., Torrente-Lujan, E.: On universal constants of AdS black holes from Hawking-Page phase transition. Phys. Lett. B 811, 135871 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Banerjee, R., Ghosh, S., Roychowdhury, D.: New type of phase transition in Reissner Nordstrm AdS black hole and its thermodynamic geometry. Phys. Lett. B 696, 156 (2011)

    ADS  Google Scholar 

  15. Liu, Y., Zou, D.C., Wang, B.: Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasi normal modes. JHEP 09, 179 (2014). arXiv:1405.2644

    ADS  MATH  Google Scholar 

  16. Belhaj, A., Chabab, M., El Moumni, H., Masmar, K., Sedra, M.B.: On thermodynamics of AdS black holes in M-theory. Eur. Phys. J. C 76(2), 73 (2016)

    ADS  MATH  Google Scholar 

  17. Belhaj, A., Belmahi, H., Benali, M., El Hadri, W., El Moumni, H., Torrente-Lujan, E.: Shadows of 5D Black Holes from string theory. Phys. Lett. B 812, 136025 (2021). arXiv:2008.13478

    MathSciNet  MATH  Google Scholar 

  18. Belhaj, A., Belmahi, H., Benali, M.: Superentropic AdS black hole shadows. Phys. Lett. B 821, 136619 (2021). arXiv:2110.06771

    MathSciNet  MATH  Google Scholar 

  19. Belhaj, A., Benali, M., El Balali, A., El Moumni, H., Ennadifi, S.-E.: Deflection angle and shadow behaviors of quintessential black holes in arbitrary dimensions. Class. Quantum Grav. 37, 215004 (2020). arXiv:2006.01078

    ADS  MathSciNet  MATH  Google Scholar 

  20. Javed, W., Abbas, J., Övgün, A.: Deflection angle of photon from magnetized black hole and effect of nonlinear electrodynamics. Eur. Phys. J. C 79, 694 (2019). arXiv:1908.09632

    ADS  Google Scholar 

  21. Belhaj, A., Belmahi, H., Benali, M.: Deflection light behaviors by AdS Black holes. Gen. Rel. Grav. 79(54), 4 (2022). arXiv:2112.06215

    ADS  MathSciNet  MATH  Google Scholar 

  22. Belhaj, A., Belmahi, H., Benali, M., El Moumni, H.: Light deflection by rotating regular black holes with a cosmological constant. arXiv:2204.10150

  23. Belhaj, A., Belmahi, H., Benali, M., El Moumni, H.: Light deflection angle by superentropic black holes. Int. J. Mod. Phys. D 31, 2250054 (2022). arXiv:2203.11143

    ADS  MathSciNet  Google Scholar 

  24. Belhaj, A., Belmahi, H., Benali, M., Segui, A.: Thermodynamics of AdS black holes from deflection angle formalism. Phys. Lett. B 817, 136313 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Herdeiro, C.A.R., Pombo, A.M., Radu, E., Cunha, P.V.P., Sanchis-Gual, N.: The imitation game: Proca stars that can mimic the Schwarzschild shadow. JCAP 04, 051 (2021). arXiv:2102.01703

    ADS  MathSciNet  MATH  Google Scholar 

  26. Wei, S.W., Zou, Y.C., Liu, Y.X., Mann, R.B.: Curvature radius and Kerr black hole shadow. JCAP 08, 030 (2019). arXiv:1904.07710

    ADS  MathSciNet  MATH  Google Scholar 

  27. Farah, J.R., Pesce, D.W., Johnson, M.D., Blackburn, L.L.: On the approximation of the black hole shadow with a simple polar curve. Astrophys. J. 900, 77 (2020). arXiv:2007.06732

    ADS  Google Scholar 

  28. Xavier, S.V.M.C.B., Cunha, P.V.P., Crispino, L.C.B., Herdeiro, C.A.R.: Shadows of charged rotating black holes: Kerr-Newman versus Kerr-Sen. Int. J. Mod. Phys. D 29, 2041005 (2020). arXiv:2003.14349

    ADS  MathSciNet  Google Scholar 

  29. Khan, S.U., Ren, J.: Shadow cast by a rotating charged black hole in quintessential dark energy. Phys. Dark Univ. 30, 100644 (2020). arXiv:2006.11289

    Google Scholar 

  30. Hou, X., Xu, Z., Wang, J.: Rotating black hole shadow in perfect fluid dark matter. JCAP 12, 040 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Belhaj, A., Benali, M., Hassouni, Y.: Superentropic black hole shadows in arbitrary dimensions. Eur. Phys. J. C 82, 619 (2022). arXiv:2203.06774

    ADS  Google Scholar 

  32. Belhaj, A., Benali, M., El Balali, A., El Hadri, W., El Moumni, H., Torrente-Lujan, E.: Black hole shadows in M-theory scenarios. Int. J. Mod. Phys. D 30, 2150026 (2021). arXiv:2008.09908

    ADS  MathSciNet  MATH  Google Scholar 

  33. Belhaj, A., El Balali, A., El Hadri, W., Hassouni, Y., Torrente-Lujan, E.: Phase transition and shadow behaviors of quintessential black holes in M-theory/superstring inspired models. Int. J. Mod. Phys. A 36, 2150057 (2021). arXiv:2004.10647

    ADS  MathSciNet  Google Scholar 

  34. Askour, N., Belhaj, A., Belmahi, H., Benali, M., El Moumni, H., Sekhmani, Y.: Light behaviors around Black Holes in M-theory. arXiv:2301.08321

  35. Wheeler, J.T.: Symmetric solutions to the Gauss-Bonnet extended Einstein equations. Nucl. Phys. B 268, 737 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Ghosh, S.G., Kumar, R.: Generating black holes in 4D Einstein-Gauss-Bonnet gravity. Class. Quant. Grav. 37, 245008 (2020). arXiv:2003.12291

    ADS  MathSciNet  MATH  Google Scholar 

  37. Ghosh, S.G., Maharaj, S.D.: Radiating black holes in the novel 4D Einstein-Gauss-Bonnet gravity. Phys. Dark Univ. 30, 100687 (2020). arXiv:2003.09841

    Google Scholar 

  38. Ghosh, S.G., Singh, D.V., Kumar, R., Maharaj, S.D.: Phase transition of AdS black holes in 4D EGB gravity coupled to nonlinear electrodynamics. Ann. Phys. 424, 168347 (2021). arXiv:2006.00594

    MathSciNet  MATH  Google Scholar 

  39. Singh, D.V., Singh, B.K., Upadhyay, S.: 4D AdS Einstein-Gauss-Bonnet black hole with Yang-Mills field and its thermodynamics. Ann. Phys. 434, 168642 (2021)

    MATH  Google Scholar 

  40. Belhaj, A., Sekhmani, Y.: Optical and thermodynamic behaviors of Ayón-Beato-García black holes for 4D Einstein Gauss-Bonnet gravity. Ann. Phys. 441, 168863 (2022)

    MATH  Google Scholar 

  41. Belhaj, A., Sekhmani, Y.: Thermodynamics of Ayon-Beato-Garcia-AdS black holes in 4D Einstein-Gauss-Bonnet gravity. Eur. Phys. J. Plus 137, 278 (2022)

    MATH  Google Scholar 

  42. Vagnozzi, S., Roy, R., Tsai, Yu-Dai, Visinelli, L., Afrin, M., Allahyari, A., Bambhaniya, P., Dey, D., Ghosh, S. G., Joshi, P. S., Jusufi, K., Khodadi, M., Walia, R. K., Övgün, A., Bambi, C.: Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius \(\text{A}^*\), arXiv:2205.07787

  43. Ketov, S.V.: Starobinsky-Bel-Robinson gravity. Universe 8, 351 (2022). arXiv:2205.13172

    ADS  Google Scholar 

  44. Ketov, S.V., Pozdeeva, E.O., Vernov, S.Y.: On the superstring-inspired quantum correction to the Starobinsky model of inflation. JCAP 12, 032 (2022). arXiv:2211.01546

    ADS  MathSciNet  MATH  Google Scholar 

  45. Delgado, R.C., Ketov, S.V.: Schwarzschild-type black holes in Starobinsky-Bel-Robinson gravity. Phys. Lett. B 838, 137690 (2023). arXiv:2209.01574

    MathSciNet  MATH  Google Scholar 

  46. Zhang, Z., Yan, H., Guo, M., Chen, B.: Shadows of Kerr black holes with a Gaussian-distributed plasma in the polar direction. Phys. Rev. D 107, 024027 (2023). arXiv:2206.04430

    ADS  MathSciNet  Google Scholar 

  47. Huang, Y., Dong, Y.P., Liu, D.J.: Revisiting the shadow of a black hole in the presence of a plasma. Int. J. Mod. Phys. D 27, 1850114 (2018). arXiv:1807.06268

    ADS  MathSciNet  Google Scholar 

  48. Witten, E.: Solutions of four-dimensional field theories via M-theory. Nucl. Phys. B 500, 42 (1997)

    MathSciNet  MATH  Google Scholar 

  49. Drake, S.P., Szekeres, P.: An explanation of the Newman-Janis Algorithm. Gen. Rel. Grav. 32, 445 (2000). arXiv:gr-qc/9807001

    ADS  MATH  Google Scholar 

  50. Erbin, H.: Janis-Newman algorithm: generating rotating and NUT charged black holes. Universe 3, 19 (2017). arXiv:1701.00037

    ADS  Google Scholar 

  51. Panting, R.C., Rodulfo, E.T.: Rotating dirty black hole and its shadow. Chin. J. Phys. 68, 1 (2022). arXiv:2003.06829

    MathSciNet  Google Scholar 

  52. Varzuez, A.E., Esteban, E.P.: Strong Field gravitational lensing by a Kerr black hole. Nuovo Cim. B 119, 489 (2004)

    ADS  MathSciNet  Google Scholar 

  53. Wei, S.W., Liu, Y.X.: Observing the shadow of Einstein–Maxwell–Dilaton–Axion black hole. JCAP 11, 063 (2013). arXiv:1311.4251

    ADS  Google Scholar 

  54. Belhaj, A., Benali, M., El Moumni, H., Essebani, M.A., Sedra, M.B., Sekhmani, Y.: Thermodynamic and optical behaviors of quintessential Hayward-AdS black holes. Int. J. Geom. Meth. Mod. Phys. 19, 2250096 (2022). arXiv:2202.06290

    MathSciNet  Google Scholar 

  55. Belhaj, A., Benali, M., Balali, A.E., Hadri, W.E., El Moumni, H.: Cosmological constant effect on charged and rotating black hole shadows. Int. J. Geom. Meth. Mod. Phys. 18, 2150188 (2021). arXiv:2007.09058

    MathSciNet  Google Scholar 

  56. Atamurotov, F., Ahmedov, B.: Optical properties of black hole in the presence of plasma: shadow. Phys. Rev. D 92, 084005 (2015). arXiv:1507.08131

    ADS  Google Scholar 

  57. Babar, G.Z., Babar, A.Z., Atamurotov, F.: Optical properties of Kerr-Newman spacetime in the presence of plasma. Eur. Phys. J. C 80, 761 (2020). arXiv:2008.05845

    ADS  Google Scholar 

  58. Bambi, C., Freese, K., Vagnozzi, S., Visinelli, L.: Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image. Phys. Rev. D 100, 044057 (2019). arXiv:1904.12983

    ADS  MathSciNet  Google Scholar 

  59. Vagnozzi, S., Visinelli, L.: Hunting for extra dimensions in the shadow of M87\(^*\). Phys. Rev. D 100, 024020 (2019). arXiv:1905.12421

    ADS  Google Scholar 

  60. Allahyari, A., Khodadi, M., Vagnozzi, S., Mota, D.F.: Magnetically charged black holes from non-linear electrodynamics and the Event Horizon Telescope. JCAP 2002, 003 (2020). arXiv:1912.08231

    ADS  MathSciNet  MATH  Google Scholar 

  61. Khodadi, M., Allahyari, A., Vagnozzi, S., Mota, D.F.: Black holes with scalar hair in light of the Event Horizon Telescope. JCAP 2009, 026 (2020). arXiv:2005.05992

    ADS  MathSciNet  MATH  Google Scholar 

  62. Roy, R., Vagnozzi, S., Visinelli, L.: Superradiance evolution of black hole shadows revisited. Phys. Rev. D 05, 083002 (2022). arXiv:2112.06932

    ADS  MathSciNet  Google Scholar 

  63. Vagnozzi, S., Bambi, C., Visinelli, L.: Concerns regarding the use of black hole shadows as standard rulers. Class. Quant. Grav. 37, 087001 (2020). arXiv:2001.02986

    ADS  MathSciNet  Google Scholar 

  64. Ono, T., Ishihara, A., Asada, H.: Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes. Phys. Rev. D 96, 104037 (2017). arXiv:1704.05615

    ADS  MathSciNet  Google Scholar 

  65. Pantig, R.C., Rodulfo, E.T.: Weak deflection angle of a dirty black hole. Chin. J. Phys. 66, 691 (2020). arXiv:2003.00764

    MathSciNet  Google Scholar 

  66. Ishihara, A., Suzuki, Y., Ono, T., Kitamura, T., Asada, H.: Gravitational bending angle of light for finite distance and the Gauss-Bonnet theorem. Phys. Rev. D 94, 084015 (2016). arXiv:1604.08308

    ADS  MathSciNet  Google Scholar 

  67. Chen, Y., Roy, R., Vagnozzi, S., Visinelli, L.: Superradiant evolution of the shadow and photon ring of Sgr \(\text{ A}^*\). Phys. Rev. D 106, 043021 (2022). arXiv:2205.06238

    ADS  Google Scholar 

  68. Afrin, M., Vagnozzi, S., Ghosh, S.G.: Tests of loop quantum gravity from the event horizon telescope results of Sgr \(\text{ A}^*\). Astrophys. J. 944, 149 (2023). arXiv:2209.12584

    ADS  Google Scholar 

  69. Do, T. Q., Nguyen, D. H., Pham, T. M.: Stability investigations of isotropic and anisotropic exponential inflation in the Starobinsky-Bel-Robinson gravity. arXiv:2303.17283

Download references

Acknowledgements

The authors would like to thank N. Askour, H. El Moumni, S-E. Ennadifi, M. Lamaaoune M. Oualaid, and Y. Sekhmani for discussions and recent collaborations on related topics.

Funding

No fundings are associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

The all authors have worked on the proposed work. All the authors have the equal contributions

Corresponding author

Correspondence to A. Belhaj.

Ethics declarations

Conflict interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

It is not applicable in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

A Construction of the rotating SBR black hole from JNA

To get the rotating version of the SBR black hole, we follow the Newman Janis algorithm via certain steps. The first one is based on a change of the involved variables providing a spherically symmetric null surface. Precisely, we consider the following variable change

$$\begin{aligned} du=dt-\frac{dr}{f(r)} \end{aligned}$$
(A.1)

where f(r) is the metric function given by the equation (2.5). In the Eddington-Finkelstein type coordinates, the black hole metric takes the following form

$$\begin{aligned} ds^{2}=-f(r)du^{2}-2du\ dr+r^{2}\left( d\theta ^{2}+\sin ^{2}\theta \ d\phi ^{2}\right) . \end{aligned}$$
(A.2)

The next step is to find a null tetrad \((\ell ^{\mu },n^{\mu },m^{\mu },{\overline{m}}^{\mu })\) satisfying the constraints

$$\begin{aligned} \ell _{\mu } \ell ^{\mu } = m_{\mu } m^{\mu } = n_{\mu } n^{\mu } = \ell _{\mu } m^{\mu } =n_{\mu } m^{\mu } =0 \, , \quad \ell _{\mu } n^{\mu } = - m_{\mu } {{{\bar{m}}}}^{\mu } =1 \end{aligned}$$
(A.3)

where the contra-variant form of the metric can be rewritten as

$$\begin{aligned} g^{\mu \nu }=-\ell ^{\mu }n^{v}-\ell ^{\nu }n^{\mu }+m^{\mu }{\overline{m}}^{\nu }+m^{\nu }{\overline{m}}^{\mu }. \end{aligned}$$
(A.4)

Using the metric expression, the null tetrad vectors are given by

$$\begin{aligned} \ell ^{\mu }= & {} \delta _{1}^{\mu }, \qquad n^{\mu }=\delta _{0}^{\mu }-\frac{1}{2} \left( 1-\frac{r_{s}}{r}+\frac{108 \beta \left( 4\sqrt{2}\pi G r_{s}\right) ^3 }{5 r^8 } \left( \frac{1}{r}-\frac{97 r_{s}}{108 r^2}\right) \right) \delta _{1}^{\mu }\nonumber \\ \end{aligned}$$
(A.5)
$$\begin{aligned} m^{\mu }= & {} \frac{1}{\sqrt{2}r}\left( \delta _{2}^{\mu }+\frac{i}{\sin ^{{}}\theta }\delta _{3}^{\mu }\right) \qquad {\overline{m}}^{\mu }=\frac{1}{ \sqrt{2}r}\left( \delta _{2}^{\mu }-\frac{i}{\sin ^{{}}\theta }\delta _{3}^{\mu }\right) \end{aligned}$$
(A.6)

where \({\overline{m}}^{\mu }\) is the complex conjugate of \(m^{\mu }\). In this scenario, the radial coordinate r could take complex values. The tetrad null vectors become

$$\begin{aligned} \ell ^{\mu }= & {} \delta _{1}^{\mu }, \qquad \nonumber \\ n^{\mu }= & {} \delta _{0}^{\mu }-\frac{1}{2} \left[ 1-\frac{r_{s}}{2}\left( \frac{1}{r}+\frac{1}{r*}\right) +\frac{54 \beta \left( 4\sqrt{2}\pi G r_{s}\right) ^3}{5 (r r*)^4}\left( \frac{1}{r}+\frac{1}{r*}-\frac{97 r_{s}}{54 r r*}\right) \right] \delta _{1}^{\mu } \nonumber \\ m^{\mu }= & {} \frac{1}{\sqrt{2}r^{*}}\left( \delta _{2}^{\mu }+\frac{i}{\sin ^{{}}\theta }\delta _{3}^{\mu }\right) , \qquad {\overline{m}}^{\mu }=\frac{1}{ \sqrt{2}r}\left( \delta _{2}^{\mu }-\frac{i}{\sin ^{{}}\theta }\delta _{3}^{\mu }\right) \end{aligned}$$
(A.7)

where \(r^{*}\) denotes the complex conjugate of r. Roughly, the following complex coordinate transformations should be exploited

$$\begin{aligned} {\widetilde{u}}= & {} u-ia\cos \theta , \qquad {\widetilde{r}}=r+ia\cos \theta \end{aligned}$$
(A.8)
$$\begin{aligned} {\widetilde{\theta }}= & {} \theta , \qquad {\widetilde{\varphi }}=\varphi \end{aligned}$$
(A.9)

leading to

$$\begin{aligned} {\widetilde{\ell }}^{\mu }= & {} \delta _{1}^{\mu } \end{aligned}$$
(A.10)
$$\begin{aligned} {\widetilde{n}}^{\mu }= & {} \delta _{0}^{\mu }-\frac{1}{2}\left[ 1-\frac{r_{s} {\widetilde{r}} }{{\widetilde{r}} ^{2}+a^{2}\cos ^{2}{\widetilde{\theta }}}+\frac{54\left( 4\sqrt{2}\pi G r_{s}\right) ^3}{5\left( {\widetilde{r}} ^{2}+a^{2}\cos ^{2}{\widetilde{\theta }}\right) ^5} \left( 2{\widetilde{r}} -\frac{97 r_{s}}{54}\right) \right] \delta _{1}^{\mu }\nonumber \\ \end{aligned}$$
(A.11)
$$\begin{aligned} {\widetilde{m}}^{\mu }= & {} \frac{1}{\sqrt{2}({\widetilde{r}}+ia\cos \widetilde{ \theta })}\left( ia\sin {\widetilde{\theta }}\left( \delta _{0}^{\mu }-\delta _{1}^{\mu }\right) +\delta _{2}^{\mu }+\frac{i}{\sin ^{{}}{\widetilde{\theta }} }\delta _{3}^{\mu }\right) \end{aligned}$$
(A.12)
$$\begin{aligned} \widetilde{{\overline{m}}}^{\mu }= & {} \frac{1}{\sqrt{2}({\widetilde{r}}-ia\cos {\widetilde{\theta }})}\left( -ia\sin {\widetilde{\theta }}\left( \delta _{0}^{\mu }-\delta _{1}^{\mu }\right) +\delta _{2}^{\mu }-\frac{i}{\sin ^{{}} {\widetilde{\theta }}}\delta _{3}^{\mu }\right) . \end{aligned}$$
(A.13)

To obtain the rotating metric solution, certain additional transformations are needed. Indeed, they are given by

$$\begin{aligned} d{\widetilde{u}}= & {} dt-\left( \frac{r^{2}+a^{2}}{\Delta }\right) dr \nonumber \\ d{\widetilde{\varphi }}= & {} d\varphi -\frac{a}{\Delta }\ dr \end{aligned}$$
(A.14)

where the \(\Delta \) function is expressed as

$$\begin{aligned} \Delta = \Delta (r) = a^2+r^2 \left( 1-\frac{2 G M}{r}+\frac{1024 \pi ^3 \beta G^6 M^3\left( 108r -194 G M\right) }{5 r^{10}}\right) . \end{aligned}$$
(A.15)

Using such transformations, the covariant components of the metric (A.2) are

$$\begin{aligned} g_{\mu \nu }=\left[ \begin{array}{cccc} \frac{a^{2}\sin ^{2}\theta -\Delta }{\Sigma } &{} 0 &{} 0 &{} \frac{a\sin ^{2}\theta \left[ \Delta -\left( r^{2}+a^{2}\right) \right] }{\Sigma } \\ 0 &{} \frac{\Sigma }{\Delta } &{} 0 &{} 0 \\ 0 &{} 0 &{} \Sigma &{} 0 \\ \frac{a\sin ^{2}\theta \left[ \Delta -\left( r^{2}+a^{2}\right) \right] }{ \Sigma } &{} 0 &{} 0 &{} \frac{\sin ^{2}\theta \left[ \left( r^{2}+a^{2}\right) ^{2}-\Delta a^{2}\sin ^{2}\theta \right] }{\Sigma } \end{array} \right] \end{aligned}$$
(A.16)

where one has used

$$\begin{aligned} \Sigma= & {} r^2+a^2\cos ^2\theta . \end{aligned}$$
(A.17)

The metric of the rotating SBR black hole could be written as follows

$$\begin{aligned} ds^2= & {} -\left( \frac{\Delta (r)-a^2\sin ^2\theta }{\Sigma }\right) dt^2 +\frac{\Sigma }{\Delta (r)}dr^2\nonumber \\{} & {} -2a\sin ^2\theta \left( 1-\frac{\Delta (r)-a^2\sin ^2\theta }{\Sigma }\right) dtd\phi +\Sigma d\theta ^2\nonumber \\{} & {} +\sin ^2\theta \left[ \Sigma +a^2\sin ^2\theta \left( 2-\frac{\Delta (r)-a^2\sin ^2\theta }{\Sigma }\right) \right] d\phi ^2. \end{aligned}$$
(A.18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhaj, A., Belmahi, H., Benali, M. et al. Optical behaviors of black holes in Starobinsky–Bel–Robinson gravity. Gen Relativ Gravit 55, 110 (2023). https://doi.org/10.1007/s10714-023-03159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03159-8

Keywords

Navigation