Skip to main content
Log in

On the polarization states of the de Broglie gravitational wave

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The pilot-wave theory is an alternative, but less used, interpretation of Quantum Mechanics. In that framework, elementary particles are guided by a wave and move along well defined trajectories. A fascinating idea is the possibility to describe the de Broglie wave as oscillations of the gravitational field, thereby giving geometrical meaning to the pilot-wave of a quantum corpuscle. In this work we will investigate the polarizations of the de Broglie gravitational wave and we will find that the spin-2 metric perturbation breaks down into two tensor (helicity-2), two vector (helicity-1) and two scalar (helicity-0) components. We will show that these dynamical variables satisfy the equation of the harmonic oscillator, meaning that they represent the physical degrees of freedom of the wave. We will also propose a method to measure the scalar modes, containing longitudinal components that are absent in standard transverse gravitational waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Notes

  1. de Broglie was actually trying to develop a new non-Newtonian form of dynamics based on the unification of Maupertuis’ variational principle for Mechanics and Fermat’s principle of least time for Optics. A detailed review of de Broglie’s work can be found in [2, 3].

  2. For a review of the recent results see [14].

  3. The analysis of the polarization modes of gravitational waves has recently received great attention, because any detection of non-tensorial polarizations is a signal of physics beyond the theory of Einstein, see [20, 21].

  4. The theory is linear in \(h_{ab}\), meaning that we neglect terms of order \(\vert h_{ab}\vert ^2\) and higher.

References

  1. de Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Radium 8, 225–241 (1927)

    Article  MATH  Google Scholar 

  2. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. University Press, Cambridge (2009). https://doi.org/10.1017/CBO9781139194983

  3. Drezet, A.: The guidance theorem of de Broglie. Annales de la Fondation Louis de Broglie 46(1), 65–86 (2021)

    Google Scholar 

  4. de Broglie, L.: Onde et Mouvements. Gauthier-Villars, Paris (1926)

    MATH  Google Scholar 

  5. de Broglie, L.: La Physique Quantique Restera-t-elle Indéterministe ? Exposé du Problème, Suivi de la Reproduction de Certains Documents et D’une Contribution de M. Jean-Pierre Vigier. Les grands problèmes des sciences 1. Gauthier-Villars, Paris (1953)

  6. Vigier, J.P.: Structure des Micro-objets dans L’interprétation Causale de la Théorie de la Théorie des Quanta. Gauthier-Villars, Paris (1956)

    Google Scholar 

  7. de Broglie, L.: Une Tentative D’interprétation Causale et Non-linéaire de la Mécanique Ondulatoire (La Théorie de la Double Solution). Gauthier-Villars, Paris (1956)

    MATH  Google Scholar 

  8. de Broglie, L.: La Théorie de la Mesure en Mécanique Ondulatoire. Gauthier-Villars, Paris (1957)

    Google Scholar 

  9. Colin, S., Durt, T., Willox, R.: de broglie’s double solution program: 90 years later. arXiv:1703.06158 (2017)

  10. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. 1. Phys. Rev. 85, 166–179 (1952). https://doi.org/10.1103/PhysRev.85.166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. 2. Phys. Rev. 85, 180–193 (1952). https://doi.org/10.1103/PhysRev.85.180

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Couder, Y., Protière, S., Fort, E., Boudaoud, A.: Walking and orbiting droplets. Nature 437, 208–208 (2005). https://doi.org/10.1038/437208a

    Article  ADS  Google Scholar 

  13. Couder, Y., Fort, E.: Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101 (2006). https://doi.org/10.1103/PhysRevLett.97.154101

    Article  ADS  Google Scholar 

  14. Bush, J., Oza, A.: Hydrodynamic quantum analogs. Rep. Prog. Phys. (2020). https://doi.org/10.1088/1361-6633/abc22c

    Article  Google Scholar 

  15. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  16. Feoli, A., Scarpetta, G.: de Broglie matter waves from the linearized Einstein field equations. Found. Phys. Lett. 11(4), 395–403 (1998). https://doi.org/10.1023/A:1022137226446

    Article  Google Scholar 

  17. Kennefick, D.: Controversies in the history of the radiation reaction problem in general relativity. In: The Expanding Worlds of General Relativity, pp. 207–234. Birkhäuser, Boston (1999)

  18. Feoli, A., Valluri, S.: A study of the de Broglie gravitational waves. Int. J. Mod. Phys. D 13(05), 907–921 (2004). https://doi.org/10.1142/S0218271804005006

    Article  ADS  Google Scholar 

  19. D’Errico, L.: A numerical study of the de Broglie gravitational wave of the electron (submitted) (2022)

  20. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 (2006). https://doi.org/10.12942/lrr-2006-3

    Article  ADS  MATH  Google Scholar 

  21. Poisson, E., Will, C.M.: Gravity: Newtonian, Post-Newtonian, Relativistic. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  22. Bardeen, J.M.: Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882–1905 (1980). https://doi.org/10.1103/PhysRevD.22.1882

    Article  ADS  MathSciNet  Google Scholar 

  23. Kodama, H., Sasaki, M.: Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1–166 (1984). https://doi.org/10.1143/PTPS.78.1

    Article  ADS  Google Scholar 

  24. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Phys. Rep. 215(5), 203–333 (1992). https://doi.org/10.1016/0370-1573(92)90044-Z

    Article  ADS  MathSciNet  Google Scholar 

  25. Tachinami, T., Tonosaki, S., Sendouda, Y.: Gravitational-wave polarizations in generic linear massive gravity and generic higher-curvature gravity. Phys. Rev. D 103, 104037 (2021). https://doi.org/10.1103/PhysRevD.103.104037

    Article  ADS  MathSciNet  Google Scholar 

  26. Eardley, D.M., Lee, D.L., Lightman, A.P.: Gravitational-wave observations as a tool for testing relativistic gravity. Phys. Rev. D 8, 3308–3321 (1973). https://doi.org/10.1103/PhysRevD.8.3308

    Article  ADS  Google Scholar 

  27. Feoli, A.: A geometric interpretation of de Broglie wave-particle model. Europhys. Lett. 58(2), 169 (2002). https://doi.org/10.1209/epl/i2002-00620-2

    Article  ADS  MathSciNet  Google Scholar 

  28. Feoli, A.: The amplitude of the de Broglie gravitational waves. Mod. Phys. Lett. A 24(31), 2497–2505 (2009). https://doi.org/10.1142/S0217732309031685

    Article  ADS  MATH  Google Scholar 

  29. Abramowitz, M., Stegun, I.A., Romer, R.H.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. American Association of Physics Teachers, New York (1972)

    MATH  Google Scholar 

  30. Nishizawa, A., Taruya, A., Hayama, K., Kawamura, S., Sakagami, M.: Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers. Phys. Rev. D 79, 082002 (2009). https://doi.org/10.1103/PhysRevD.79.082002

    Article  ADS  Google Scholar 

  31. Yunes, N., Siemens, X.: Gravitational-wave tests of general relativity with ground-based detectors and pulsar-timing arrays. Living Rev. Relativ. 16(1), 9 (2013). https://doi.org/10.12942/lrr-2013-9

    Article  ADS  Google Scholar 

  32. Lee, K., Jenet, F.A., Price, R.H., Wex, N., Kramer, M.: Detecting massive gravitons using pulsar timing arrays. Astrophys. J. 722(2), 1589 (2010). https://doi.org/10.1088/0004-637X/722/2/1589

    Article  ADS  Google Scholar 

  33. Qin, W., Boddy, K.K., Kamionkowski, M.: Subluminal stochastic gravitational waves in pulsar-timing arrays and astrometry. Phys. Rev. D 103, 024045 (2021). https://doi.org/10.1103/PhysRevD.103.024045

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work.

Corresponding author

Correspondence to Luca D’Errico.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Errico, L., Benedetto, E. & Feoli, A. On the polarization states of the de Broglie gravitational wave. Gen Relativ Gravit 55, 83 (2023). https://doi.org/10.1007/s10714-023-03132-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03132-5

Keywords

Navigation