Skip to main content

Advertisement

Log in

Energy formula, surface geometry and energy extraction for Kerr-Sen black hole

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We evaluate the surface energy (\(\mathcal {E}_{s}^{\pm }\)), rotational energy (\(\mathcal { E}_{r}^{\pm }\)) and electromagnetic energy (\(\mathcal { E}_{em}^{\pm }\)) for a Kerr-Sen black hole (BH) having the event horizon (\(\mathcal { H}^{+}\)) and the Cauchy horizon (\(\mathcal { H}^{-}\)). Interestingly, we find that the sum of these three energies is equal to the mass parameter i.e. \(\mathcal { E}_{s}^{\pm }+\mathcal { E}_{r}^{\pm }+\mathcal { E}_{em}^{\pm }=\mathcal { M}\) . Moreover in terms of the scale parameter  \((\zeta _{\pm })\), the distortion parameter (\(\xi _{\pm }\)) and a new parameter \((\sigma _{\pm })\) which corresponds to the area (\(\mathcal { A}_{\pm }\)), the angular momentum  (J) and the charge parameter (Q), we find that the mass parameter in a compact form \(\mathcal { E}_{s}^{\pm }+\mathcal { E}_{r}^{\pm }+\mathcal { E}_{em}^{\pm }=\mathcal { M} =\frac{\zeta _{\pm } }{2} \sqrt{\frac{1+2\,\sigma _{\pm }^2}{1-\xi _{\pm }^2}}\) which is valid through all the horizons (\(\mathcal { H}^{\pm }\)). We also compute the equatorial circumference and polar circumference which is a gross measure of the BH surface deformation. It is shown that when the spinning rate of the BH increases, the equatorial circumference increases while the polar circumference decreases. We show that there exist two classes of geometry separated by \(\xi _{\pm }=\frac{1}{2}\) in Kerr-Sen BH. In the regime \(\frac{1}{2}<\xi _{\pm }\le \frac{1}{\sqrt{2}}\), the Gaussian curvature is negative and there exist two polar caps on the surface. While for \(\xi _{\pm }<\frac{1}{2}\), the Gaussian curvature is positive and the surface will be an oblate deformed sphere. Furthermore, we compute the exact expression of rotational energy that should be extracted from the BH via Penrose process. The maximum value of rotational energy which is extractable should occur for extremal Kerr-Sen BH i.e. \(\mathcal { E}_{r}^{+} =\left( \sqrt{2}-1\right) \sqrt{\frac{J}{2}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. For recent calculation of these energies for the NUT class of BHs one must see the Ref. [3]

  2. Note that the ergosphere coincides with \(r_{+}\) only at the poles \(\theta =0\) and \(\theta =\pi \)

References

  1. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973). https://doi.org/10.1103/PhysRevD.7.2333

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973). https://doi.org/10.1007/BF01645742

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Pradhan, P.: Energy formula for Newman-Unti-Tamburino class of black holes. Gen. Rel. Gravit. 53, 59 (2021). https://doi.org/10.1007/s10714-021-02836-w

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Pradhan, P.: Thermodynamic products for Sen Black Hole. Eur. Phys. J. C 76, 131 (2016). https://doi.org/10.1140/epjc/s10052-016-3976-1

    Article  ADS  Google Scholar 

  5. Sen, A.: Rotating charged black hole solution in heterotic string theory. Phys. Rev. Lett. 69, 1006 (1992). https://doi.org/10.1103/PhysRevLett.69.1006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Sen, A.: Black hole solutions in heterotic string theory on a torus. Nucl. Phys. B 440, 421 (1995). https://doi.org/10.1016/0550-3213(95)00063-X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Smarr, L.: Mass formula for a Kerr black holes. Phys. Rev. Lett. 30, 71 (1973). https://doi.org/10.1103/PhysRevLett.30.71

    Article  ADS  Google Scholar 

  8. Smarr, L.: Mass formula for a Kerr black holes. Phys. Rev. Lett. 31(E), 521 (1973). https://doi.org/10.1103/PhysRevLett.30.521

    Article  ADS  Google Scholar 

  9. Smarr, L.: Surface geometry of charged rotating black holes. Phys. Rev. D 7, 289 (1973). https://doi.org/10.1103/PhysRevD.7.289

    Article  ADS  Google Scholar 

  10. Penrose, R., Floyd, R.M.: Extraction of rotational energy from a black hole. Nat. Phys. Sci. 229, 177 (1971). https://doi.org/10.1038/physci229177a0

    Article  ADS  Google Scholar 

  11. Christodoulou, D.: Reversible and irreversible transformations in black hole physics. Phys. Rev. 25, 1596 (1970). https://doi.org/10.1103/PhysRevLett.25.1596

    Article  ADS  Google Scholar 

  12. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthapratim Pradhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix-A

To compute the Gaussian curvature we have to write the metric in the following form by using Eq. (35)

$$\begin{aligned} d\mathcal { S}^2= & {} \zeta _{\pm }^2 \left[ \frac{dy^2}{f(y)}+f(y)\,d\phi ^2 \right] ~. \end{aligned}$$
(63)

where

$$\begin{aligned} f(y)= & {} \frac{1-y^2}{1-\xi _{\pm }^2(1-y^2)}~. \end{aligned}$$
(64)

and the value of \(y=\cos \theta \). We know that the Gaussian curvature [9] is defined for the above metric as

$$\begin{aligned} K \equiv K(y) = - \frac{f''(y)}{2\zeta _{\pm }^2}~. \end{aligned}$$
(65)

For our metric, the Gaussian curvature of \(\mathcal { H}^{\pm }\) is calculated to be

$$\begin{aligned} K_{\pm }(\mathcal { M},a,q,\theta )= & {} \frac{\left( r_{\pm }^2+2qr_{\pm }+a^2 \right) \left( r_{\pm }^2+2qr_{\pm }-3a^2\cos ^2\theta \right) }{\left( r_{\pm }^2+2qr_{\pm }+a^2\cos ^2\theta \right) ^3}~. \end{aligned}$$
(66)

In terms of scale parameter and distortion parameter, the Gaussian curvature of \(\mathcal { H}^{\pm }\) becomes

$$\begin{aligned} K_{\pm }(\zeta _{\pm },\xi _{\pm },\theta )= & {} \frac{\left[ 1-\xi _{\pm }^2\left( 1+3\cos ^2\theta \right) \right] }{\zeta _{\pm }^2 \left( 1-\xi _{\pm }^2 \sin ^2\theta \right) ^3}~. \end{aligned}$$
(67)

When the rotation is off i.e. \(a=\xi _{\pm }=0\), we will get the spherically symmetric situation and in this situation the Gaussian curvature becomes

$$\begin{aligned} K_{\pm }(\zeta _{\pm },0,\theta )= & {} \frac{1}{\zeta _{\pm }^2}=\frac{1}{r_{\pm }^2+2qr_{\pm }} =K_{\pm }(\mathcal { M},0,q,\theta )~. \end{aligned}$$
(68)

If one could take the value of charge parameter becomes zero then we would get spherically symmetric Schwarzschild BH:

$$\begin{aligned} K_{\pm }(\zeta _{\pm },0,\theta )= & {} \frac{1}{\zeta _{+}^2}=\frac{1}{r_{+}^2} =K_{\pm }(\mathcal { M},0,0,\theta )~. \end{aligned}$$
(69)

It implies that the Gaussian curvature looks like a sphere. This is the limiting situation. For generalized case the Gaussian curvature is a function of polar angle \(\theta \) when the the BH is rotating i.e. (\(\xi _{\pm } \ne 0\)).

Case-I: When \(\xi _{\pm }=\frac{1}{2}\), the Gaussian curvature becomes zero at the poles (\(\theta =0\)). Alternatively this occurs when \(a=\frac{\sqrt{3\mathcal { M}^2-2Q^2}}{2}\)

Case-II: When \(\frac{1}{2}<\xi _{\pm }\le \frac{1}{\sqrt{2}}\), the Gaussian curvature becomes negative and there exist two polar caps on the surface. Like Kerr-Newman BH, there exist two geometrically distinct classes of charged rotating BH in heterotic string theory when the value of distortion parameter satisfied the following criterion:

$$\begin{aligned} \xi _{\pm } \gtrless \frac{1}{2} \end{aligned}$$

Say for example when we choose the criterion \(\xi _{\pm }>\frac{1}{2}\), the Gaussian curvature is computed to be

$$\begin{aligned} K_{\pm }(\zeta _{\pm },\frac{3}{5},\theta )= & {} \frac{625}{\zeta _{\pm }^2}\frac{(16-27\cos ^2\theta )}{(25-9\sin ^2\theta )^3}. \end{aligned}$$
(70)

Consequently at the pole it becomes

$$\begin{aligned} K_{\pm }(\zeta _{\pm },\frac{3}{5},0)= & {} - \frac{11}{25 \zeta _{\pm }^2}<0. \end{aligned}$$
(71)

This class of BH geometry having the Gaussian curvature is negative. That’s why the surfaces are likely to be a pseudosphere.

On the other hand if we choose the criterion \(\xi _{\pm }<\frac{1}{2}\), the Gaussian curvature is computed to be

$$\begin{aligned} K_{\pm }(\zeta _{\pm },\frac{2}{5},\theta )= & {} \frac{625}{\zeta _{\pm }^2}\frac{(21-12\cos ^2\theta )}{(25-4\sin ^2\theta )^3}. \end{aligned}$$
(72)

Consequently at the pole it becomes

$$\begin{aligned} K_{\pm }(\zeta _{\pm },\frac{2}{5},0)= & {} \frac{9}{25 \zeta _{\pm }^2}>0. \end{aligned}$$
(73)

This class of BH geometry having the Gaussian curvature is positive everywhere on the surface. The surfaces are likely to be a oblate deformed sphere.

Note that as a special case at the equator, the curvature of \(\mathcal { H}^{\pm }\) reduces to

$$\begin{aligned} K_{\pm }^{e}= & {} \frac{\left( r_{\pm }^2+2qr_{\pm }+a^2 \right) }{\left( r_{\pm }^2+2qr_{\pm }\right) ^2} =\frac{2\mathcal { M}}{r_{\pm }\left( r_{\pm }+2q\right) ^2}>0 ~. \end{aligned}$$
(74)

In summary, at the pole, there exist two polar caps while at the equator there does not exist such a polar cap.

Appendix-B: Topology, Euler number and Gauss-Bonnet theorem

Using the general formula of Gaussian curvature derived in Eq. (67), we can compute the topology of the surface. To evaluate the topology of the surface we can apply the Gauss-Bonnet theorem which states that

$$\begin{aligned} \iint _{M} K_{\pm }\,\, \omega _{\theta }\wedge \omega _{\phi }= & {} 2\pi \chi (M) ~. \end{aligned}$$
(75)

where \(\chi \) is the Euler characteristic of the surface. For \(\mathcal { H}^{\pm }\), we get

$$\begin{aligned} \iint _{M} K_{\pm }\,\, \omega _{\theta }\wedge \omega _{\phi }= & {} 4\pi ~. \end{aligned}$$
(76)

This implies that \(\chi =2\). Like Kerr BH, the surface of the charged BH in heterotic string theory is topologically a 2-sphere.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, P. Energy formula, surface geometry and energy extraction for Kerr-Sen black hole. Gen Relativ Gravit 55, 25 (2023). https://doi.org/10.1007/s10714-023-03065-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03065-z

Keywords

Navigation