Skip to main content
Log in

The Jacobi metric approach for dynamical wormholes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present the Jacobi metric formalism for dynamical wormholes. We show that in isotropic dynamical spacetimes , a first integral of the geodesic equations can be found using the Jacobi metric, and without any use of geodesic equation. This enables us to reduce the geodesic motion in dynamical wormholes to a dynamics defined in a Riemannian manifold. Then, making use of the Jacobi formalism, we study the circular stable orbits in the Jacobi metric framework for the dynamical wormhole background. Finally, we also show that the Gaussian curvature of the family of Jacobi metrics is directly related, as in the static case, to the flare-out condition of the dynamical wormhole, giving a way to characterize a wormhole spacetime by the sign of the Gaussian curvature of its Jacobi metric only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Sometimes they are called cosmological wormholes.

  2. We impose the condition \(a(t) >0\) in (2.1) to avoid cosmological singularities.

  3. \(\delta =0\) for null geodesics, although we know that for timelike geodesics the equation of motion is going to be the same.

  4. For static wormholes this condition is reduced to \(u_{c}^n=\frac{1}{b_{o}^n}\) which implies that the only circular orbit is located at the throat of the wormhole [4].

  5. The form factor a(t) comes from the Friedman equation. We have set all constants equal to one.

  6. Note that the Jacobi metric is a Riemannian metric.

References

  1. Pin, O.C.: Curvature and mechanics. Adv. Math. 15(3), 269–311 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gibbons, G.W.: The Jacobi-metric for timelike geodesics in static spacetimes. Class. Quant. Grav. 33(2), 025004 (2016). https://doi.org/10.1088/0264-9381/33/2/025004. arXiv:1508.06755 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Das, P., Sk, R., Ghosh, S.: Motion of charged particle in Reissner–Nordström spacetime: a Jacobi-metric approach. Eur. Phys. J. C 77(11), 735 (2017). https://doi.org/10.1140/epjc/s10052-017-5295-6. arXiv:1609.04577 [gr-qc]

    Article  ADS  Google Scholar 

  4. Argañaraz, M., Lasso Andino, O.: Dynamics in wormhole spacetimes: a Jacobi metric approach. Class. Quant. Grav. 38(4), 045004 (2021). https://doi.org/10.1088/1361-6382/abcf86. arXiv:1906.11779 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Argañaraz, M.A., Andino, O.L.: The generalized Jacobi metric. arXiv:2112.10910 [gr-qc]

  6. Chanda, S., Gibbons, G.W., Guha, P.: Jacobi–Maupertuis metric and Kepler equation. Int. J. Geom. Methods Mod. Phys. 14(07), 1730002 (2017). arXiv:1612.07395 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  7. Chanda, S., Gibbons, G.W., Guha, P.: Jacobi–Maupertuis–Eisenhart metric and geodesic flows. J. Math. Phys. 58(3), 032503 (2017). arXiv:1612.00375

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bera, A., Ghosh, S., Majhi, B.R.: Hawking radiation in a non-covariant frame: the Jacobi metric approach. Eur. Phys. J. Plus 135(8), 670 (2020). https://doi.org/10.1140/epjp/s13360-020-00693-1. arXiv:1909.12607 [gr-qc]

    Article  Google Scholar 

  9. Cataldo, M., del Campo, S., Minning, P., Salgado, P.: Evolving Lorentzian wormholes supported by phantom matter and cosmological constant. Phys. Rev. D 79, 024005 (2009). https://doi.org/10.1103/PhysRevD.79.024005. arXiv:0812.4436 [gr-qc]

    Article  ADS  Google Scholar 

  10. Hayward, S.A.: Dynamic wormholes. Int. J. Mod. Phys. D 8, 373–382 (1999). https://doi.org/10.1142/S0218271899000286. arXiv:gr-qc/9805019 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Rehman, M., Saifullah, K.: Thermodynamics of dynamical wormholes. JCAP 06, 020 (2021). https://doi.org/10.1088/1475-7516/2021/06/020. arXiv:2001.08457 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Mishra, A., Chakraborty, S.: On the trajectories of null and timelike geodesics in different wormhole geometries. Eur. Phys. J. C 78(5), 374 (2018). https://doi.org/10.1140/epjc/s10052-018-5854-5. arXiv:1710.06791 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Lasso Andino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duenas-Vidal, Á., Lasso Andino, O. The Jacobi metric approach for dynamical wormholes. Gen Relativ Gravit 55, 9 (2023). https://doi.org/10.1007/s10714-022-03060-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-03060-w

Keywords

Navigation