Skip to main content
Log in

Reentrant phase transition with a single critical point of the Hayward-AdS black hole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The reentrant phase transition (RPT) is composed of at least two phase transition, which has previously been observed in the Condensed Matter Theory/systems, and now has been found with a renewal interest in black hole thermodynamics. For the RPT, there exist always two and several critical points; while the first order phase transition always corresponds to a single critical point. In this paper, we present a black hole thermodynamical systems with a single critical point possessing the RPT, other than a first order phase transition. Concretely, we focus on the Hayward-AdS black hole, i.e. the AdS black hole in the gravity with a nonlinear electrodynamics, consider its extended thermodynamics, and investigate its critical phenomena and phase structure, especially the RPT in detail. The number of critical points and the types of phase transition depend on the strength constant of the nonlinear electromagnetic field. We introduce an unexpected RPT with a single physical critical point for the first time. We also present all distinct and physical critical RPT points in the phase diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hawking, S.W., Page, D.N.: Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. Witten, E.: Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505 (1998). [arXiv:hep-th/9803131]

    Article  MathSciNet  MATH  Google Scholar 

  3. Maldacena, J. M.: The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]. [arXiv:hep-th/9711200]

  4. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). [arXiv:hep-th/9802150]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999). [arXiv:hep-th/9902170]

    Article  ADS  MathSciNet  Google Scholar 

  7. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Holography, thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999). [arXiv:hep-th/9904197]

    Article  ADS  MathSciNet  Google Scholar 

  8. Dolan, B.P.: Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Grav. 28, 235017 (2011). [arXiv:1106.6260 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cvetic, M., Gibbons, G.W., Kubiznak, D., Pope, C.N.: Black hole enthalpy and an entropy inequality for the thermodynamic volume. Phys. Rev. D 84, 024037 (2011). [arXiv:1012.2888 [hep-th]]

    Article  ADS  Google Scholar 

  10. Castro, A., Dehmami, N., Giribet, G., Kastor, D.: On the universality of inner black hole mechanics and higher curvature gravity. JHEP 1307, 164 (2013). [arXiv:1304.1696 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dolan, B.P., Kastor, D., Kubiznak, D., Mann, R.B., Traschen, J.: Thermodynamic volumes and isoperimetric inequalities for de sitter black holes. Phys. Rev. D 87(10), 104017 (2013). [arXiv:1301.5926 [hep-th]]

    Article  ADS  Google Scholar 

  12. Kastor, D., Ray, S., Traschen, J.: Smarr formula and an extended first law for lovelock gravity. Class. Quant. Grav. 27, 235014 (2010). [arXiv:1005.5053 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Mahmoud El-Menoufi, B., Ett, B., Kastor, D., Traschen, J.: Gravitational tension and thermodynamics of planar AdS spacetimes. Class. Quant. Grav. 30, 155003–2435 (2013). [arXiv:1302.6980 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kubiznak, D., Mann, R.B.: P-V criticality of charged AdS black holes. JHEP 1207, 033 (2012). [arXiv:1205.0559 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Altamirano, N., Kubiznak, D., Mann, R.B., Sherkatghanad, Z.: Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume. Galaxies 2, 89 (2014). [arXiv:1401.2586 [hep-th]]

    Article  ADS  Google Scholar 

  16. Kubiznak, D., Mann, R.B., Teo, M.: Black hole chemistry: thermodynamics with Lambda. Class. Quant. Grav. 34(6), 063001 (2017). [arXiv:1608.06147 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gunasekaran, S., Mann, R.B., Kubiznak, D.: Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization. JHEP 1211, 110 (2012). [arXiv:1208.6251 [hep-th]]

    Article  ADS  Google Scholar 

  18. Altamirano, N., Kubiznak, D., Mann, R.B.: Reentrant phase transitions in rotating antiCde Sitter black holes. Phys. Rev. D 88(10), 101502 (2013). [arXiv:1306.5756 [hep-th]]

    Article  ADS  Google Scholar 

  19. Hennigar, R.A., Mann, R.B., Tjoa, E.: Superfluid black holes. Phys. Rev. Lett. 118(2), 021301 (2017). [arXiv:1609.02564 [hep-th]]

    Article  ADS  Google Scholar 

  20. Hudson, C.: Die gegenseitige lslichkeit von nikotin in wasser. Z. Phys. Chem. 47, 113 (1904)

    Article  Google Scholar 

  21. Narayanan, T., Kumar, A.: Reentrant phase transitions in multicomponent liquid mixtures. Phys. Rep. 249, 135 (1994)

    Article  ADS  Google Scholar 

  22. Maslov, V.P.: Zeroth-order phase transitions. Math. Notes 76, 697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frassino, A.M., Kubiznak, D., Mann, R.B., Simovic, F.: Multiple reentrant phase transitions and triple points in lovelock thermodynamics. JHEP 1409, 080 (2014). [arXiv:1406.7015 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Sherkatghanad, Z., Mirza, B., Mirzaiyan, Z., Hosseini Mansoori, S.A.: Critical behaviors and phase transitions of black holes in higher order gravities and extended phase spaces. Int. J. Mod. Phys. D 26(03), 1750017 (2016). [arXiv:1412.5028 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hennigar, R.A., Brenna, W.G., Mann, R.B.: \(P-v\) criticality in quasitopological gravity. JHEP 1507, 077 (2015). [arXiv:1505.05517 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Kubiznak, D., Simovic, F.: Thermodynamics of horizons: de Sitter black holes and reentrant phase transitions. Class. Quant. Grav. 33(24), 245001 (2016). [arXiv:1507.08630 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hennigar, R.A., Mann, R.B.: Reentrant phase transitions and van der Waals behaviour for hairy black holes. Entropy 17(12), 8056 (2015). [arXiv:1509.06798 [hep-th]]

    Article  ADS  Google Scholar 

  28. Zou, D.C., Yue, R., Zhang, M.: Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity. Eur. Phys. J. C 77(4), 256 (2017). [arXiv:1612.08056 [gr-qc]]

    Article  ADS  Google Scholar 

  29. Zhang, M., Zou, D.C., Yue, R.H.: Reentrant phase transitions and triple points of topological AdS black holes in Born-Infeld-massive gravity. Adv. High Energy Phys. 2017, 3819246 (2017). [arXiv:1707.04101 [hep-th]]

    Article  MathSciNet  MATH  Google Scholar 

  30. Hendi, S.H., Momennia, M.: Reentrant phase transition of BornCInfeld-dilaton black holes. Eur. Phys. J. C 78(10), 800 (2018). [arXiv:1709.09039 [gr-qc]]

    Article  ADS  Google Scholar 

  31. Dehyadegari, A., Sheykhi, A.: Reentrant phase transition of Born-Infeld-AdS black holes. Phys. Rev. D 98(2), 024011 (2018). [arXiv:1711.01151 [gr-qc]]

    Article  ADS  Google Scholar 

  32. Xu, W., Wang, Cy., Zhu, B.: Effects of Gauss-Bonnet term on the phase transition of a Reissner-Nordstrom-AdS black hole in (3+1) dimensions. Phys. Rev. D 99(4), 044010 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  33. Kord Zangeneh, M., Dehyadegari, A., Sheykhi, A., Mann, R.B.: Microscopic origin of black hole reentrant phase transitions. Phys. Rev. D 97(8), 084054 (2018). [arXiv:1709.04432 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  34. Born, M., Infeld, L.: Foundations of the new field theory. Proc. Roy. Soc. Lond. A 144, no. 852, 425 (1934) [J. Phys. Soc. Jap. 8, no. 8, 307 (1934)]

  35. Fradkin, E.S., Tseytlin, A.A.: Nonlinear electrodynamics from quantized strings. Phys. Lett. B 163, 123–130 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Ayon-Beato, E., Garcia, A.: Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  37. Ayon-Beato, E., Garcia, A.: New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B 464, 25 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Hayward, S.A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006). [arXiv:gr-qc/0506126]

    Article  ADS  Google Scholar 

  39. Fan, Z.Y.: Critical phenomena of regular black holes in anti-de Sitter space-time. Eur. Phys. J. C 77(4), 266 (2017). [arXiv:1609.04489 [hep-th]]

    Article  ADS  Google Scholar 

  40. Fan, Z.Y., Wang, X.: Construction of regular black holes in general relativity. Phys. Rev. D 94(12), 124027 (2016). [arXiv:1610.02636 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  41. Bronnikov, K.A.: Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 63, 044005 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  42. Hassaine, M., Martinez, C.: Higher-dimensional charged black holes solutions with a nonlinear electrodynamics source. Class. Quant. Grav. 25, 195023 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Balart, L., Vagenas, E.C.: Regular black holes with a nonlinear electrodynamics source. Phys. Rev. D 90(12), 124045 (2014)

    Article  ADS  Google Scholar 

  44. Olmo, G.J., Rubiera-Garcia, D.: Palatini \(f(R)\) black holes in nonlinear electrodynamics. Phys. Rev. D 84, 124059 (2011)

    Article  ADS  Google Scholar 

  45. Hollenstein, L., Lobo, F.S.N.: Exact solutions of f(R) gravity coupled to nonlinear electrodynamics. Phys. Rev. D 78, 124007 (2008)

    Article  ADS  Google Scholar 

  46. Ma, M.S.: Magnetically charged regular black hole in a model of nonlinear electrodynamics. Ann. Phys. 362, 529–537 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Liu, Y., Gong, Y., Wang, B.: Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics. JHEP 02, 116 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. He, Y., Ma, M.S.: \((2+1)\)-dimensional regular black holes with nonlinear electrodynamics sources. Phys. Lett. B 774, 229–234 (2017)

    Article  ADS  MATH  Google Scholar 

  49. Zhang, C.Y., Wu, Y.B., Zhang, Y.N., Wang, H.Y., Wu, M.M.: Holographic paramagnetism-ferromagnetism phase transition with the nonlinear electrodynamics. Nucl. Phys. B 914, 446–460 (2017)

    Article  ADS  MATH  Google Scholar 

  50. Yao, W., Yang, C., Jing, J.: Holographic insulator/superconductor transition with exponential nonlinear electrodynamics probed by entanglement entropy. Eur. Phys. J. C 78(5), 353 (2018)

    Article  ADS  Google Scholar 

  51. Breton, N.: Smarrs formula for black holes with non-linear electrodynamics. Gen. Rel. Grav. 37, 643–650 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Hendi, S.H., Panahiyan, S., Eslam Panah, B.: P-V criticality and geometrical thermodynamics of black holes with Born-Infeld type nonlinear electrodynamics. Int. J. Mod. Phys. D 25(01), 1650010 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Miskovic, O., Olea, R.: Conserved charges for black holes in Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics in AdS space. Phys. Rev. D 83, 024011 (2011)

    Article  ADS  Google Scholar 

  54. Gonzalez, H.A., Hassaine, M., Martinez, C.: Thermodynamics of charged black holes with a nonlinear electrodynamics source. Phys. Rev. D 80, 104008 (2009)

    Article  ADS  Google Scholar 

  55. Wang, P., Wu, H., Yang, H.: Thermodynamics of nonlinear electrodynamics black holes and the validity of weak cosmic censorship at charged particle absorption. Eur. Phys. J. C 79(7), 572 (2019)

    Article  ADS  Google Scholar 

  56. Dehghani, M.: Thermodynamic properties of dilaton black holes with nonlinear electrodynamics. Phys. Rev. D 98(4), 044008 (2018)

    Article  ADS  Google Scholar 

  57. Han, Y.W., Lan, M.J., Zeng, X.X.: Thermodynamics and weak cosmic censorship conjecture in (2+1)-dimensional regular black hole with nonlinear electrodynamics sources. Eur. Phys. J. Plus 135(2), 172 (2020)

    Article  Google Scholar 

  58. Wang, P., Wu, H., Yang, H.: Thermodynamics and phase transition of a nonlinear electrodynamics black hole in a cavity. JHEP 07, 002 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  59. Kuang, X.M., Liu, B., Övgün, A.: Nonlinear electrodynamics AdS black hole and related phenomena in the extended thermodynamics. Eur. Phys. J. C 78(10), 840 (2018)

    Article  ADS  Google Scholar 

  60. Wang, P., Wu, H., Yang, H.: Thermodynamics and phase transitions of nonlinear electrodynamics black holes in an extended phase space. JCAP 04, 052 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for useful suggestions and comments which considerably improved the quality of the manuscript. We would like to thank Bin Zhu and Yuan-Zhang Cui for useful conversations. Wei Xu was supported by the National Natural Science Foundation of China (NSFC) Under Grant Nos. 11505065, 11374330 and 91636111, and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YP., Cao, HM. & Xu, W. Reentrant phase transition with a single critical point of the Hayward-AdS black hole. Gen Relativ Gravit 54, 5 (2022). https://doi.org/10.1007/s10714-021-02886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02886-0

Keywords

Navigation