Skip to main content
Log in

Constructing wormhole solutions of attractive geometries in the framework of f(R) gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this work, we show that any viable f(R) gravity model with constant scalar curvature could be implemented to construct wormholes that are supported by ordinary matter. In particular, the constructed wormholes give rise to attractive geometries at least in specific regions, if the ratio between the Lagrangian density function f(R) and its derivative \(F=\frac{df(R)}{dR}\) satisfies certain constraints. In this context, we derive static, spherically symmetric and traversable wormhole solutions supported by anisotropic matter field where both the weak and the strong energy conditions could be satisfied. The obtained solutions are physically realistic as they respect the asymptotic flatness condition. The case of traceless energy-momentum tensor is further investigated where it is shown that if the Ricci scalar is constant, then the only admitted f(R) gravity model is the one involving a square Lagrangian, i.e \(f(R)=cR^2\). For this model we derived the constraints that allow the corresponding wormhole to satisfy the energy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Flam, L.: Bitrage zur Einsteinschen Gravitationstheorie. Phys. Z. 17, 448 (1916)

    Google Scholar 

  2. Einstein, A., Rozen, N.: The particle problem in the general theory of relativity. Phys. Rev. 48, 73–77 (1935)

    Article  ADS  Google Scholar 

  3. Morris, M.S., Thorne, K.S.: Am. J. Phys. 56, 395 (1988)

    Article  ADS  Google Scholar 

  4. Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. American Institute of Physics, New York (1995)

    Google Scholar 

  5. Bhawal, B., Kar, S.: Phys. Rev. D 46, 2464 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Nand, K.K., Bhattacharjee, B., Alam, S.M.K., Evans, J.: Phys. Rev. D 57, 823 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bohmer, C.G., Harko, T., Lobo, F.S.N.: Phys. Rev. D 85, 044033 (2012)

    Article  ADS  Google Scholar 

  8. Furey, N., DeBenedictis, A.: Class. Quantum Gravity 22, 313 (2005)

    Article  ADS  Google Scholar 

  9. Banerjee, A., Singh, K., Jasim, M., Rahaman, F.: Traversible Wormholes in \(f(R,T)\) Gravity With Conformal Motions. arXiv:1908.04754v1 [gr-qc] (2019)

  10. Starobinsky, A.A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  11. Capozziello, S., Cardone, V.F., Carloni, S., Troisi, A.: Int. J. Mod. Phys. D 12, 1969 (2003)

    Article  ADS  Google Scholar 

  12. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.: Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  13. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  14. Multamaki, T., Vilja, I.: Phys. Rev. D 74, 064022 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fjallborg, M.: Class. Quantum Grav. 24(9), 2253–2270 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Faraoni, V.: \(f(R)\) Gravity: Successes and Challenges. arXiv:0810.2602 [gr-qc] (2008)

  17. Capozziello, S. De Laurentis, M.: Extended Theories of Gravity. arXiv:1108.6266v2 [gr-qc] (2011)

  18. DeBenedictis, A., Horvat, D.: Gen. Relativ. Gravit. 44, 27711 (2012)

    Article  Google Scholar 

  19. Sharif, M., Zahra, Z.: Static wormhole solutions in \(f(R)\) gravity. Astrophys. Sp. Sci. (2013). https://doi.org/10.1007/s10509-013-1545-8

    Article  Google Scholar 

  20. Lobo, F., Oliveira, M.: Wormhole Geometries in \(f(R)\) Modified Theories of Gravity. arXiv:0909.5539v2 [gr-qc] (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usamah S. Al-Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Consider the following curvature invariants:

$$\begin{aligned} R&=g^{ij}R_{ij}~~~~~~~~\\ R_1&=\frac{1}{4}S_a^bS_b^a~~~~~\\ R_2&=-\frac{1}{8}S_a^bS_b^aS_b^c \end{aligned}$$

where R is the Ricci scalar, \(R_1\) and \(R_2\) are respectively the first and the second Ricci invariants and \(S_{ij}\) is the trace free Ricci tensor given by \(S_{ij}=R_{ij}-\frac{R}{4}g_{ij}\). The value of the above invariants for the general static wormhole metric (1) are given below

$$\begin{aligned} R&=2\left( 1-\frac{b}{r}\right) (\Psi ''+\Psi '^2)+\left( \frac{4}{r}-\frac{3b}{r^2}-\frac{b'}{r}\right) \Psi '-\frac{2b'}{r^2}\\ R_1&=-\frac{1}{16r^6}(r^2(b'^2(r^2\psi '^2+2)-4rb'\psi '(r^2\psi ''+r^2\psi '^2-2)\\&\quad +4r^2(r^2\psi ''^2+r^2\psi '^4+2\psi '^2(r^2\psi ''+1)))\\&\quad +2rb(b'(-2r^3\psi '^3+\psi '(6r-2r^3\psi '')+r^2\psi '^2+2)\\&\quad +2r(2r^3\psi '^4+2\psi '^2(2r^3\psi ''+r)+2r\psi ''(r^2\psi ''-1)\\&\quad -r^2\psi '^3+\psi '(2-r^2\psi ''))) -b^2(4r^4\psi ''^2+4r^4\psi '^4 \\&\quad -4r^3\psi '^3-8r^2\psi ''-4r\psi '(r^2\psi ''-3)+\psi '^2(8r^4\psi ''+r^2)+6)). \\ R_2&=\frac{3}{64r^9}(b(2r\psi '+1)-r(b+2r\psi '))^2(r^2(b'\psi '\\&\quad -2r(\psi ''+\psi '^2))+b((2r^2\psi ''+2r^2\psi '^2-r\psi '-2)) \end{aligned}$$

Ricci invariants of the first solution (20)

Recall that \(b(r)=r_0\) and \(\psi (r)=\psi _0\) so the invariants are given by

$$\begin{aligned} R&=0\\ R_1&=0\\ R_2&=\frac{3r_0^3}{P32r^9}(1-r)^2 \end{aligned}$$

Ricci invariants of the second solution (27)

In this case, \(b(r)=\frac{r_0^2}{2r_0+1}(2+\frac{1}{r})\) and \(\psi (r)=\ln {\frac{r+1}{r}}\) so the invariants are given by

$$\begin{aligned} R&=0\\ R_1&=-\frac{1}{16r^6}\left( r^2\left( \frac{r_0^4}{(2r_0+1)^2r^4}\left( \frac{1}{(r+1)^2}+2\right) -\frac{4r_0^2}{(2r_0+1)(r^3+r^2)}\left( \frac{2r}{(r+1)^2}-2\right) \right. \right. \\&\left. \quad + 4r^2\left( \frac{2r+1}{(r+1)^2}+\frac{1}{r^2(r+1)^2}+\frac{2}{r^2(r+1)^2}\left( \frac{2r+1}{(r+1)^2}+1\right) \right) \right) \\&\quad + 2rc_1\left( 2+\frac{1}{r}\right) \left( \frac{-r_0^2}{(2r_0+1)r^2}\left( \frac{2}{(r+1)^3}-\frac{1}{r(r+1)}\left( 6r-\frac{2r^2+r}{(r+1)^2}\right) +\frac{1}{(r+1)^2}+2\right) \right. \\&\left. \left. \quad + \frac{1}{r(r+1)^3}-\frac{1}{r(r+1)}\left( 2-\frac{2r+1}{(r+1)^2}\right) \right) \right) -4c_1^2\left( 2+\frac{1}{r}\right) ^2\frac{(2r+1)^3+1}{(r+1)^4}\\&\quad + \frac{4}{(r+1)^3}-\frac{8(2r+1)}{(r+1)^2}+\frac{4(2r+1)}{(r+1)^3}-\frac{12}{r+1}+\frac{8(2r+1)}{(r+1)^4}+\frac{6}{r^2(r+1)^2}\\ R_2&=\frac{-3}{64r^9}\left( \left( 2c_1+\frac{c_1}{r}\right) \left( 1-\frac{2}{r+1}\right) -2c_1r-c_1+\frac{2r}{r+1}\right) ^2\left( \frac{r_0^2}{r(2r_0+1)(r+1)}-\frac{4r}{r+1}\right) \\&\quad + \left( 2c_1+\frac{c_1}{r}\right) \left( \frac{5}{r+1}-2\right) \end{aligned}$$

Ricci invariants of the third solution (37)

In this case, \(b(r)=\frac{r+10r^2+39r^3+71r^4+51.5r^5+(r_0^{-2}+9r_0^{-1}+32r_0+28.5)r^5e^{2/r-2/r_0}}{(1+2r)^5}\) and \(\psi (r)=-\frac{1}{r}\) so the invariants are given by

$$\begin{aligned} R&=0\\ R_1&=-\frac{1}{16r^6}\\&\quad \left( (1+2r^2)\left( \frac{r+10r^2+39r^3+71r^4+51.5r^5+(r_0^{-2}+9r_0^{-1}+32r_0+28.5)r^5e^{2/r-2/r_0}}{(1+2r)^5}\right) '^2~~~\right. \\&\qquad +(8-\frac{4}{r}+8r)\left( \frac{r+10r^2+39r^3+71r^4+51.5r^5+(r_0^{-2}+9r_0^{-1}+32r_0+28.5)r^5e^{2/r-2/r_0}}{(1+2r)^5}\right) '\\&\left. \qquad +16+\frac{4}{r^2}+8\left( 1-\frac{2}{r}\right) \right) \\&\qquad +2r\left( \frac{r+10r^2+39r^3+71r^4+51.5r^5+(r_0^{-2}+9r_0^{-1}+32r_0+28.5)r^5e^{2/r-2/r_0}}{(1+2r)^5}\right) \\&\qquad \left( \left( \frac{r+10r^2+39r^3+71r^4+51.5r^5+(r_0^{-2}+9r_0^{-1}+32r_0+28.5)r^5e^{2/r-2/r_0}}{(1+2r)^5}\right) '\right. \\&\quad \left( \frac{6}{r}+\frac{5}{r^2}-\frac{2}{r^3}+2\right) \left. \left. +2r\left( \frac{2}{r^5}-\frac{8}{r^4}+\frac{10}{r^3}+\frac{4}{r^2}\right) -\frac{1}{r^4}+\frac{2}{r^2}+\frac{2}{r^3}\right) \right) \\&\qquad -\left( \frac{r+10r^2+39r^3+71r^4+51.5r^5+(r_0^{-2}+9r_0^{-1}+32r_0+28.5)r^5e^{2/r-2/r_0}}{(1+2r)^5}\right) ^2\left( \frac{28}{r}+\frac{25}{r^2}-\frac{20}{r^3}+10\right) \\ R_2&=-\frac{3}{64r^9}\left( \left( \frac{2}{r}-r+1\right) \left( \frac{r+10r^2+39r^3+71r^4+51.5r^5+(r_0^{-2}+9r_0^{-1}+32r_0+28.5)r^5e^{2/r-2/r_0}}{(1+2r)^5}\right) -2\right) ^2\\&\qquad \times \left( \left( \frac{r+10r^2+39r^3+71r^4+51.5r^5+(r_0^{-2}+9r_0^{-1}+32r_0+28.5)r^5e^{2/r-2/r_0}}{(1+2r)^5}\right) '+4-\frac{2}{r}\right. \\&\left. \qquad + \left( \frac{2}{r^2}-\frac{5}{r}-2\right) \left( \frac{r+10r^2+39r^3+71r^4+51.5r^5+(r_0^{-2}+9r_0^{-1}+32r_0+28.5)r^5e^{2/r-2/r_0}}{(1+2r)^5}\right) \right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Ali, U.S., Bokhari, A.H. Constructing wormhole solutions of attractive geometries in the framework of f(R) gravity. Gen Relativ Gravit 54, 2 (2022). https://doi.org/10.1007/s10714-021-02885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02885-1

Keywords

Navigation