Skip to main content
Log in

Cosmological implications of the hydrodynamical phase of group field theory

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this review we focus on the main cosmological implications of the Group Field Theory approach, according to which an effective continuum macroscopic dynamics can be extracted from the underlying formalism for quantum gravity. Within this picture what counts is the collective behaviour of a large number of quanta of geometry. The resulting state is a condensate-like structure made of “pre-geometric” excitations of the Group Field Theory field over a no-space vacuum. Starting from the kinematics and dynamics, we offer an overview of the way in which Group Field Theory condensate cosmology treats solutions for the homogeneous and isotropic universe. These solutions including a bounce, share with other quantum cosmological approaches the resolution of the singularity characterizing general relativity. Contrary to what is usually done in quantum cosmology, in Group Field Theory cosmology no preliminary symmetry reduction is needed for this purpose. We conclude with a discussion of the limits and future perspectives of the Group Field Theory approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It should be noted that ‘singularity avoidance mechanisms’ may exist in more conventional mini-superspace of quantum geometrodynamics. For instance, from simple particle models like [5] to more comprehensive studies in more realistic situations [6] and recent extension to anisotropic models [7], in which the analysis is consistently based on the behaviour of the wavefunction and not on the bouncing behaviour of quantum-corrected classical equations. For an overview and a comparison between LQC and standard quantum cosmology, see [8].

  2. For further analysis concerning these topics refer to [10].

  3. This procedure is usually generalized to an arbitrary \(k-\)number of massless scalar fields, \(J=0,1,..., k\). Here we restrict the analysis to only four of them because they will be used for labelling the four spatiotemporal dimensions; i.e. 1 temporal \(\phi ^0\) and 3 spatial \(\phi ^i\) independent components.

  4. The fact that \(N\rightarrow \infty \) corresponds to a continuum limit in which a phase transition is reached has been shown in detail in matrix models for two-dimensional gravity [36].

  5. The kinematical Fock space is known to be troublesome for defining an interacting quantum field theory. According to Haag’s theorem one should not expect solutions to the quantum dynamics to be defined as elements on the Fock space.

  6. For a choice that can be generalized [47, 49].

  7. See Sect. 4.2 for clocks and Sect. 5 for rods.

  8. This choice is a convention and can be exchanged; on the other way around, one can start with a right “gauge symmetry” on the \(\varphi \) field and then impose the left invariance over \(\sigma \) obtaining equivalent results.

  9. In the convolution of Wigner \(D-\)matrices with SU(2) intertwiners, the usual range of values for the magnetic indices is taken: \(-j\le m\), \(n\le j\). The indices \(\imath \) labels the possible intertwiners elements in a basis of the Hilbert space; \(\imath _l\) and \(\imath _r\) points to the imposition of the left and right invariance to the field. To a detailed construction of the wavefunction see for instance [38]; here we just sum up the main steps for deriving a cosmological sector from the full theory.

  10. Anyway, in order to translate the theory into a set of equations for cosmological observables, the addition of a scalar field variable is crucial, since it allows us to define within the full theory a set of relational observables with a clear physical meaning. In GFT approaches we find models including a scalar field as matter content. The use of matter reference frames is not new; it dates back at least to DeWitt proposal [103] where coordinates are proposed to be constructed with convenient matter scalar variables (in [104] an extended discussion can be found). More contemporary advances have been obtained by using dust matter to account for this effect. First insights have been proposed by Brown and Kuchař [31] and generalizations to LQG have been developed in Ref. [105]. Relevant advances have been done also by Gielen [60, 97]. With regard to models constructed from the theories discussed in this review, the employment of a massless scalar field as a relational clock defining relational dynamics also appears in canonical LQG [106] and LQC [107, 108].

  11. It would be interesting to contrast the latter deparametrized framework for a single clock with a covariant setting in which one can choose different clocks, following the ideas of [109,110,111]. In this respect, recent work has been done by [112].

References

  1. Gielen, S., Sindoni, L.: Quantum cosmology from group field theory condensates: a review. SIGMA 12, 082 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Oriti, D.: Disappearance and emergence of space and time in quantum gravity. Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 46, 186 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233 (2003)

    Article  MathSciNet  Google Scholar 

  5. Russo, J.G., Townsend, P.K.: Cosmology as relativistic particle mechanics: from big crunch to big bang. Class. Quant. Grav. 22, 737 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Bouhmadi-Lopez, M., Kiefer, C., Sandhoefer, B., Vargas Moniz, P.: On the quantum fate of singularities in a dark-energy dominated universe. Phys. Rev. D 79, 124035 (2009)

    Article  ADS  Google Scholar 

  7. Kiefer, C., Kwidzinski, N., Piontek, D.: Singularity avoidance in Bianchi I quantum cosmology. Eur. Phys. J. C 79, 686 (2019)

    Article  ADS  Google Scholar 

  8. Bojowald, M., Kiefer, C., Vargas Moniz, P.: Quantum cosmology for the 21st century: a debate. contribution to the Proceedings of the 12\(^{th}\) marcel grossmann conference, Paris, July 2009, [arXiv:1005.2471]

  9. Brunnemann, J., Thiemann, T.: On (cosmological) singularity avoidance in loop quantum gravity. Class. Quant. Grav. 23, 1395 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Coule, D. H.: Contrasting quantum cosmologies (2003). [arXiv:gr-qc/0312045]

  11. Bojowald, M.: Inflation from quantum geometry. Phys. Rev. Lett. 89, 261301 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. de Cesare, M., Pithis, A.G.A., Sakellariadou, M.: Cosmological implications of interacting group field theory models: cyclic Universe and accelerated expansion. Phys. Rev. D 94, 064051 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  13. Oriti, D.: The universe as a quantum gravity condensate. Comptes Rendus Phys. 18, 235 (2017)

    Article  ADS  Google Scholar 

  14. Marchetti, L., Oriti, D.: Quantum fluctuations in the effective relational GFT cosmology, (2020), [arXiv:2010.09700]

  15. Oriti, D.: Group field theory as the microscopic description of the quantum spacetime fluid: a new perspective on the continuum in quantum gravity. PoS QG-PH (2007) 030, [arXiv:0710.3276]

  16. Oriti, D.: Levels of spacetime emergence in quantum gravity, (2018), [arXiv:1807.04875]

  17. Finocchiaro, M. , Oriti, D.: Renormalization of group field theories for quantum gravity: new computations and some suggestions. Front. Phys. 8, 649 (2021)

  18. Oriti, D.: Foundations of space and time reflections on quantum gravity. In: llis, G., Murugan, J., Weltman, A. (eds.) The microscopic dynamics of quantum space as a group field theory. Cambridge University Press, Cambridge (2012)

    Chapter  MATH  Google Scholar 

  19. Baratin, A., Oriti, D.: Ten questions on Group Field Theory (and their tentative answers). J. Phys. Conf. Ser. 360, 012002 (2012)

    Article  Google Scholar 

  20. Krajewski, T.: Group field theories. PoS QGQGS 2011, 005 (2011)

    Google Scholar 

  21. Reisenberger, M.P., Rovelli, C.: Spacetime as a Feynman diagram: the connection formulation. Class. Quant. Grav. 18, 121 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Baratin, A., Oriti, D.: Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity. Phys. Rev. D 85, 044003 (2012)

    Article  ADS  Google Scholar 

  23. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quant. Grav. 21, R53 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Rovelli, C.: Quantum gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  25. Thiemann, T.: Modern canonical quantum general relativity. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  26. Han, M., Huang, W., Ma, Y.: Fundamental structure of loop quantum gravity. Int. J. Mod. Phys. D 16, 1397 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Nicolai, H., Peeters, K., Zamaklar, M.: Loop quantum gravity: an outside view. Class. Quant. Grav. 22, R193 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Oriti, D.: Group field theory as the \(2^{nd}\) quantization of Loop Quantum Gravity. Class. Quant. Grav. 33, 085005 (2016)

    Article  MATH  ADS  Google Scholar 

  29. Rovelli, C.: What is observable in classical and quantum gravity? Class. Quant. Grav. 8, 297 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  30. Dittrich, B.: Partial and complete observables for canonical general relativity. Class. Quant. Grav. 23, 6155 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Brown, J.D., Kuchař, K.V.: Dust as a standard of space and time in canonical quantum gravity. Phys. Rev. D 51, 5600 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  32. Ashtekar, A., Lewandowski, J.: Representation theory of analytic holonomy C\(^* -\)algebras, in Knots and Quantum Gravity (Riverside, CA, : Oxford Lecture Ser. Math. Appl., Vol. 1. Oxford University Press, New York 1994, 21–61 (1993)

  33. Baratin, A., Dittrich, B., Oriti, D., Tambornino, J.: Non-commutative flux representation for loop quantum gravity. Class. Quant. Grav. 28, 175011 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Oriti, D.: Group field theory and loop quantum gravity. In: Ashtekar, A., Pullin, J. (eds.) Loop quantum gravity: the first 30 years, pp. 125–152. World Scientific, Singapore (2017)

    Chapter  MATH  Google Scholar 

  35. Gielen, S., Oriti, D.: Quantum cosmology from quantum gravity condensates: cosmological variables and lattice-refined dynamics. New J. Phys. 16, 123004 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Di Francesco, P., Ginsparg, P., Zinn-Justin, J.: 2D gravity and random matrices. Phys. Rep. 254, 1 (1995)

    Article  ADS  Google Scholar 

  37. Henson, J.: The causal set approach to quantum gravity. In: Oriti, D. (ed.) Approaches to quantum gravity, pp. 393–413. Cambridge University Press, Cambridge (2009)

    Chapter  Google Scholar 

  38. Oriti, D., Sindoni, L., Wilson-Ewing, E.: Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates. Class. Quant. Grav. 33, 224001 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Li, Y., Oriti, D., Zhang, M.: Group field theory for quantum gravity minimally coupled to a scalar field. Class. Quant. Grav. 34, 195001 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Perez, A.: Spin foam models for quantum gravity. Class. Quant. Grav. 20, R43 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Perez, A.: The spin foam approach to quantum gravity. Living Rev. Relativ. 16(3), 128 (2013)

    MATH  Google Scholar 

  42. De Pietri, R., Freidel, L., Krasnov, K., Rovelli, C.: Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space. Nucl. Phys. B 574, 785 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. Barrett, J.W., Crane, L.: A Lorentzian signature model for quantum general relativity. Class. Quant. Grav. 17, 3101 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Swanson, E.S.: A primer on functional methods and the Schwinger-Dyson equations. AIP Conf. Proc. 1296, 75 (2010)

    Article  ADS  Google Scholar 

  45. Ooguri, H.: Prog. Theor. Phys. 89, 1 (1993)

    Article  ADS  Google Scholar 

  46. Freidel, L.: Int. J. Phys. 44, 1769 (2005)

    Article  Google Scholar 

  47. Gielen, S., Oriti, D., Sindoni, L.: Homogeneous cosmologies as group field theory condensates. JHEP 1406, 013 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Oriti, D., Pranzetti, D., Ryan, J.P., Sindoni, L.: Class. Quant. Grav. 32, 235016 (2015)

    Article  ADS  Google Scholar 

  49. Gielen, S., Oriti, D., Sindoni, L.: Cosmology from group field theory formalism for quantum gravity. Phys. Rev. Lett. 111, 031301 (2013)

    Article  ADS  Google Scholar 

  50. Pithis, A.G.A., Sakellariadou, M.: Group field theory condensate cosmology: an appetizer. Universe 5, 6 (2019)

    Article  Google Scholar 

  51. Atland, A., Simons, B.: Condensed matter field theory. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  52. Leggett, A.: Quantum liquids: Bose condensation and Cooper pairing in condensed-matter systems. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  53. Ben Geloun, J., Martini, R., Oriti, D.: Functional Renormalization Group analysis of a Tensorial Group Field Theory on \(\mathbb{R}^3\). EPL 112, 31001 (2015)

    Article  ADS  Google Scholar 

  54. Ben Geloun, J., Martini, R., Oriti, D.: Functional renormalization group analysis of tensorial group field theories on \(\mathbb{R}^d\). Phys. Rev. D 94, 024017 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  55. Pithis, A.G.A., Thürigen, J.: Phase transitions in group field theory: The Landau perspective. Phys. Rev. D 98, 126006 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  56. Pitaevskii, L., Stringari, S.: Bose-Einstein condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  57. Bojowald, M., Chinchilli, A.L., Simpson, D., Dantas, C.C., Jaffe, M.: Nonlinear (loop) quantum cosmology. Phys. Rev. D 86, 124027 (2012)

    Article  ADS  Google Scholar 

  58. Oriti, D., Sindoni, L., Wilson-Ewing, E.: Bouncing cosmologies from quantum gravity condensates. Class. Quant. Grav. 34, 04LT01 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Gielen, S.: Inhomogeneous universe from group field theory condensate. JCAP 1902, 013 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  60. Gielen, S., Oriti, D.: Cosmological perturbations from full quantum gravity. Phys. Rev. D 98, 106019 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  61. Marchetti, L., Oriti, D.: Effective relational cosmological dynamics from quantum gravity. JHEP 5, 025 (2021)

  62. Pithis, A.G.A., Sakellariadou, M., Tomov, P.: Impact of nonlinear effective interactions on group field theory quantum gravity condensates. Phys. Rev. D 94, 064056 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  63. Koslowski, T., Sahlmann, H.: Loop quantum gravity vacuum with nondegenerate geometry. SIGMA 8, 026 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Peter, F., Weyl, H.: Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe. Math. Ann. 97, 737 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  65. Gielen, S.: Quantum cosmology of (loop) quantum gravity condensates: an example. Class. Quant. Grav. 31, 155009 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  66. de Cesare, M., Oriti, D., Pithis, A.G.A., Sakellariadou, M.: Dynamics of anisotropies close to a cosmological bounce in quantum gravity. Class. Quant. Grav. 35, 015014 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  67. Pithis, A.G.A., Sakellariadou, M.: Relational evolution of effectively interacting group field theory quantum gravity condensates. Phys. Rev. D 95, 064004 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  68. Blyth, W.F., Isham, C.J.: Quantization of a Friedmann universe filled with a scalar field. Phys. Rev. D 11, 768 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  69. Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quant. Grav. 28, 213001 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  70. de Pietri, R., Rovelli, C.: Geometry eigenvalues and scalar product from recoupling theory in loop quantum gravity. Phys. Rev. D 54, 2664 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  71. Ashtekar, A., Lewandowski, J.: Quantum theory of geometry: II Volume operators. Adv. Theor. Math. Phys. 1, 388 (1998)

    Article  MathSciNet  Google Scholar 

  72. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593 (1995) : Erratum: Nucl. Phys. B 456, 753 (1995)

  73. Bianchi, E., Dona, P., Speziale, S.: Polyhedra in loop quantum gravity. Phys. Rev. D 83, 044035 (2011)

    Article  ADS  Google Scholar 

  74. Barbieri, A.: Quantum tetrahedra and simplicial spin networks. Nucl. Phys. B 518, 714 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  75. Brunnemann, J., Thiemann, T.: Simplification of the spectral analysis of the volume operator in loop quantum gravity. Class. Quant. Grav. 23, 1289 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  76. Bojowald, M.: Loop quantum cosmology. Living Rev. Relativ. 11, 4 (2008)

    Article  MATH  ADS  Google Scholar 

  77. Gielen, S.: Emergence of a low spin phase in group field theory condensates. Class. Quant. Grav. 33, 224002 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  78. Ashtekar, A., Pawłowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 0844003 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  79. Bojowald, M., Cartin, D., Khanna, G.: Lattice refining loop quantum cosmology, anisotropic models and stability. Phys. Rev. D 76, 064018 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  80. Ashtekar, A., Wilson-Ewing, E.: Loop quantum cosmology of Bianchi I models. Phys. Rev. D 79, 083535 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  81. Pawłowski, T.: Observations on interfacing loop quantum gravity with cosmology. Phys. Rev. D 92, 124020 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  82. Calcagni, G.: Loop quantum cosmology from group field theory. Phys. Rev. D 90, 064047 (2014)

    Article  ADS  Google Scholar 

  83. Dapor, A., Liegener, K., Pawłowski, T.: Challenges in recovering a consistent cosmology from the effective dynamics of loop quantum gravity. Phys. Rev. D 100, 106016 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  84. Adjei, E., Gielen, S., Wieland, W.: Cosmological evolution as squeezing: a toy model for group field cosmology. Class. Quant. Grav. 35, 105016 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  85. Taveras, V.: Corrections to the Friedmann equations from loop quantum gravity for a universe with a free scalar field. Phys. Rev. D 78, 064072 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  86. Wilson-Ewing, E.: A relational Hamiltonian for group field theory. Phys. Rev. D 99, 086017 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  87. Gielen, S., Polaczek, A., Wilson-Ewing, E.: Addendum to "Relational Hamiltonian for group field theory”. Phys. Rev. D 100, 106002 (2019)

  88. de Cesare, M., Sakellariadou, M.: Accelerated expansion of the Universe without an inflaton and resolution of the initial singularity from Group Field Theory condensates. Phys. Lett. B 764, 49 (2017)

    Article  MATH  ADS  Google Scholar 

  89. Pithis, A.G.A., Sakellariadou, M., Tomov, P.: Impact of nonlinear effective interactions on group field theory quantum gravity condensates. Phys. Rev. D 94, 064056 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  90. Mukhanov, V., Feldman, H.A., Brandenberger, R.: Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  91. Salopek, D.S., Bond, J.R.: Nonlinear evolution of long wavelength metric fluctuations in inflationary models. Phys. Rev. D 42, 3936 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  92. Wands, D., Malik, K.A., Lyth, D.H., Liddle, A.R.: A New approach to the evolution of cosmological perturbations on large scales. Phys. Rev. D 62, 043527 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  93. Gerhardt, F., Oriti, D., Wilson-Ewing, E.: The separate universe framework in group field theory condensate cosmology. Phys. Rev. D 98, 066011 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  94. Mukhanov, V.F., Chibisov, G.V.: Quantum Fluctuations and a Nonsingular Universe. JETP Lett 33, 532 (1981) [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)]

  95. Gielen, S.: Identifying cosmological perturbations in group field theory condensates. JHEP 1508, 010 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  96. Baumann, D.: Inflation, in physics of the large and small, TASI 2009. Proceedings of the theoretical advanced Study Institute in elementary particle physics. C. Csaki, S. Dodelson (eds.) (World Scientific, 2011), pp. 523-686, [arXiv:0907.5424]

  97. Gielen, S.: Group field theory and its cosmology in a matter reference frame. Universe 4, 103 (2018)

    Article  ADS  Google Scholar 

  98. Kotecha, I., Oriti, D.: Statistical equilibrium in quantum gravity: Gibbs states in group field theory. New J. Phys. 20, 073009 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  99. Chirco, G., Kotecha, I., Oriti, D.: Statistical equilibrium of tetrahedra from maximum entropy principle. Phys. Rev. D 99, 086011 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  100. Assanioussi, M., Kotecha, I.: Thermal representations in group field theory: squeezed vacua and quantum gravity condensates. JHEP 2020, 173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  101. Assanioussi, M., Kotecha, I.: Thermal quantum gravity condensates in group field theory cosmology. Phys. Rev. D 102, 044024 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  102. Sakellariadou, M.: Quantum gravity and cosmology: an intimate interplay. J. Phys. Conf. Ser. 880, 012003 (2017)

    Article  Google Scholar 

  103. DeWitt, B.S.: The Quantization of geometry. In: Witten, L. (ed.) Gravitation: an introduction to current research, pp. 266–381. Wiley, New York (1962)

    Google Scholar 

  104. Giddings, S.B., Marolf, D., Hartle, J.B.: Observables in effective gravity. Phys. Rev. D 74, 064018 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  105. Giesel, K., Thiemann, T.: Scalar material reference systems and loop quantum gravity. Class. Quant. Grav. 32, 135015 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  106. Domagała, M., Giesel, K., Kamiński, W., Lewandowski, J.: Gravity quantized: loop quantum gravity with a scalar field. Phys. Rev. D 82, 104038 (2010)

    Article  ADS  Google Scholar 

  107. Ashtekar, A., Paw Lowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D. 74, 084003 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  108. Giesel, K., Vetter, A.: Reduced loop quantization with four Klein–Gordon scalar fields as reference matter. Class. Quant. Grav. 36, 145002 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  109. Vanrietvelde, A., Hoehn, P.A., Giacomini, F., Castro-Ruiz, E.: A change of perspective: switching quantum reference frames via a perspective-neutral framework. Quantum 4, 225 (2020)

    Article  Google Scholar 

  110. Höhn, P.A.: Switching internal times and a new perspective on the ‘wave function of the universe’. Universe 5, 116 (2019)

    Article  ADS  Google Scholar 

  111. Chataignier, L.: Construction of quantum Dirac observables and the emergence of WKB time. Phys. Rev. D 101, 086001 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  112. Gielen, S., Polaczek, A.: Hamiltonian group field theory with multiple scalar matter fields. Phys. Rev. D 103, 086011 (2021)

  113. Gielen, S., Menndez-Pidal, L.: Singularity resolution depends on the clock. Class. Quant. Grav. 37, 205018 (2020)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Marco De Cesare, Claus Kiefer, Isha Kotecha and Daniele Oriti for fruitful discussions and suggestions. We also thank the referee for their remarks which led to an improvement of the manuscript. This article is part of a project that has received funding from the European Research Council (ERC) under the Horizon 2020 research and innovation programme (Grant agreement No. 758145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Gabbanelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabbanelli, L., De Bianchi, S. Cosmological implications of the hydrodynamical phase of group field theory. Gen Relativ Gravit 53, 66 (2021). https://doi.org/10.1007/s10714-021-02833-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-021-02833-z

Keywords

Navigation