Skip to main content

Advertisement

Log in

Beyond \(\Lambda \)CDM with low and high redshift data: implications for dark energy

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Assuming that the Universe at higher redshifts (\(z \sim 4\) and beyond) is consistent with \(\Lambda \)CDM model as constrained by the Planck measurements, we reanalyze the low redshift cosmological data to reconstruct the Hubble parameter as a function of redshift. This enables us to address the \(H_0\) and other tensions between low z observations and high z Planck measurement from CMB. From the reconstructed H(z), we compute the energy density for the “dark energy” sector of the Universe as a function of redshift without assuming a specific model for dark energy. We find that the dark energy density has a minimum for certain redshift range and that the value of dark energy at this minimum \({\rho }_{_{\text {DE}}}^{\text {min}}\) is negative. This behavior can most simply be described by a negative cosmological constant plus an evolving dark energy component. We discuss possible theoretical and observational implications of such a scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. That evolving and dynamical dark energy is necessitated by the data has also been discussed in [11,12,13,14,15,16,17,18].

  2. We note that similar reconstruction of dark energy properties have been extensively analyzed in the literature, e.g. see [21,22,23,24]. Our data analysis method and the data sets we consider here is different than these other works.

  3. In principle, one could have included a curvature term, \(\rho _C (1+z)^2\), especially in light of recent claims in [38]. We intend to study such a possibility in upcoming work.

  4. We have repeated the analysis with the model independent diameter distance measurements [39,40,41] and find that they do not change our results.

  5. Note that we are using Pade \(P_{2,2}\) parametrization only for \(0<z_{\text {match}}\lesssim 8\) region and for higher z one should use higher order Pade parametrization for better fit to actual model.

References

  1. Planck Collaboration, Ade, P.A.R., et al.: Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). arXiv:1502.01589

  2. Planck Collaboration, Ade, P.A.R., et al.: Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. 594, A14 (2016). arXiv:1502.01590

  3. Riess, A.G., et al.: A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826(1), 56 (2016). arXiv:1604.01424

    ADS  MathSciNet  Google Scholar 

  4. Riess, A.G., et al.: Type Ia supernova distances at redshift > 1.5 from the Hubble Space Telescope multi-cycle treasury programs: the early expansion rate. Astrophys. J. 853(2), 126 (2018). arXiv:1710.00844

    ADS  Google Scholar 

  5. Riess, A.G., et al.: Milky Way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant. Astrophys. J. 861(2), 126 (2018). arXiv:1804.10655

    ADS  Google Scholar 

  6. Planck Collaboration, Akrami, Y., et al.: Planck 2018 results. I. Overview and the cosmological legacy of Planck (2018). arXiv:1807.06205

  7. Planck Collaboration, Aghanim, N., et al.: Planck 2018 results. VI. Cosmological parameters (2018). arXiv:1807.06209

  8. Bonvin, V., et al.: H0LiCOW–V. New COSMOGRAIL time delays of HE 0435–1223: H0 to 3.8 per cent precision from strong lensing in a flat \(\Lambda \)CDM model. Mon. Not. R. Astron. Soc. 465(4), 4914–4930 (2017). arXiv:1607.01790

    ADS  Google Scholar 

  9. Collaboration, B.O.S.S., Delubac, T., et al.: Baryon acoustic oscillations in the Ly\(alpha\) forest of BOSS DR11 quasars. Astron. Astrophys. 574, A59 (2015). arXiv:1404.1801

    Google Scholar 

  10. Sahni, V., Shafieloo, A., Starobinsky, A.A.: Model independent evidence for dark energy evolution from baryon acoustic oscillations. Astrophys. J. 793(2), L40 (2014). arXiv:1406.2209

    ADS  Google Scholar 

  11. Sola Peracaula, J., Gomez-Valent, A., Perez, J.D.C.: Signs of dynamical dark energy in current observations. Phys. Dark Universe 25, 100311 (2019). arXiv:1811.03505

    ADS  Google Scholar 

  12. Solà Peracaula, J., de Cruz Pérez, J., Gómez-Valent, A.: Dynamical dark energy vs. \(\Lambda \) = const in light of observations. EPL 121(3), 39001 (2018). arXiv:1606.00450

    ADS  Google Scholar 

  13. Ryan, J., Doshi, S., Ratra, B.: Constraints on dark energy dynamics and spatial curvature from Hubble parameter and baryon acoustic oscillation data. Mon. Not. R. Astron. Soc. 480(1), 759–767 (2018). arXiv:1805.06408

    ADS  Google Scholar 

  14. Ooba, J., Ratra, B., Sugiyama, N.: Planck 2015 constraints on spatially-flat dynamical dark energy models. arXiv:1802.05571

  15. Di Valentino, E., Melchiorri, A., Linder, E.V., Silk, J.: Constraining dark energy dynamics in extended parameter space. Phys. Rev. D 96(2), 023523 (2017). arXiv:1704.00762

    ADS  Google Scholar 

  16. Bonilla Rivera, A., Farieta, J.G.: Exploring the dark universe: constraints on dynamical dark energy models from CMB, BAO and growth rate measurements. Int. J. Mod. Phys. D 28(09), 1950118 (2019). arXiv:1605.01984

    Google Scholar 

  17. Zhao, G.-B., et al.: Dynamical dark energy in light of the latest observations. Nat. Astron. 1(9), 627–632 (2017). arXiv:1701.08165

    ADS  Google Scholar 

  18. Zhang, Y., Zhang, H., Wang, D., Qi, Y., Wang, Y., Zhao, G.-B.: Probing dynamics of dark energy with latest observations. Res. Astron. Astrophys. 17(6), 050 (2017). arXiv:1703.08293

    ADS  Google Scholar 

  19. Poulin, V., Boddy, K.K., Bird, S., Kamionkowski, M.: Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions. Phys. Rev. D 97(12), 123504 (2018). arXiv:1803.02474

    ADS  Google Scholar 

  20. Wang, Y., Pogosian, L., Zhao, G.-B., Zucca, A.: Evolution of dark energy reconstructed from the latest observations. Astrophys. J. 869, L8 (2018). arXiv:1807.03772

    ADS  Google Scholar 

  21. Shafieloo, A.: Model independent reconstruction of the expansion history of the universe and the properties of dark energy. Mon. Not. R. Astron. Soc. 380, 1573–1580 (2007). arXiv:astro-ph/0703034

    ADS  Google Scholar 

  22. Seikel, M., Clarkson, C., Smith, M.: Reconstruction of dark energy and expansion dynamics using Gaussian processes. J. Cosmol. Astropart. Phys. 1206, 036 (2012). arXiv:1204.2832

    ADS  Google Scholar 

  23. Gerardi, F., Martinelli, M., Silvestri, A.: Reconstruction of the Dark Energy equation of state from latest data: the impact of theoretical priors. J. Cosmol. Astropart. Phys. 1907, 042 (2019). arXiv:1902.09423

    ADS  MathSciNet  Google Scholar 

  24. Wang, D., Zhang, W., Meng, X.-H.: Searching for the evidence of dynamical dark energy. Eur. Phys. J. C 79(3), 211 (2019). arXiv:1903.08913

    ADS  Google Scholar 

  25. Saini, T.D., Raychaudhury, S., Sahni, V., Starobinsky, A.A.: Reconstructing the cosmic equation of state from supernova distances. Phys. Rev. Lett. 85, 1162–1165 (2000). arXiv:astro-ph/9910231

    ADS  Google Scholar 

  26. Gruber, C., Luongo, O.: Cosmographic analysis of the equation of state of the universe through Pade approximations. Phys. Rev. D 89(10), 103506 (2014). arXiv:1309.3215

    ADS  Google Scholar 

  27. Wei, H., Yan, X.-P., Zhou, Y.-N.: Cosmological applications of Pade approximant. J. Cosmol. Astropart. Phys. 1401, 045 (2014). arXiv:1312.1117

    ADS  MathSciNet  Google Scholar 

  28. Rezaei, M., Malekjani, M., Basilakos, S., Mehrabi, A., Mota, D.F.: Constraints to dark energy using PADE parameterizations. Astrophys. J. 843(1), 65 (2017). arXiv:1706.02537

    ADS  Google Scholar 

  29. Mehrabi, A., Basilakos, S.: Dark energy reconstruction based on the Pade approximation; an expansion around the \(\varLambda \)CDM. Eur. Phys. J. C 78(11), 889 (2018). arXiv:1804.10794

    ADS  Google Scholar 

  30. Benetti, M., Capozziello, S.: Connecting early and late epochs by \(f(z)\)CDM cosmography. arXiv:1910.09975

  31. Capozziello, S., Ruchika, Sen, A.A.: Model independent constraints on dark energy evolution from low-redshift observations. Mon. Not. R. Astron. Soc. 484, 4484 (2019). arXiv:1806.03943

    ADS  Google Scholar 

  32. Evslin, J., Sen, A.A., Ruchika, : Price of shifting the Hubble constant. Phys. Rev. D 97(10), 103511 (2018). arXiv:1711.01051

    ADS  Google Scholar 

  33. Gomez-Valent, A., Amendola, L.: \(H_0\) from cosmic chronometers and type Ia supernovae, with Gaussian processes and the novel weighted polynomial regression method. J. Cosmol. Astropart. Phys. 1804(04), 051 (2018). arXiv:1802.01505

    ADS  Google Scholar 

  34. Pinho, A.M., Casas, S., Amendola, L.: Model-independent reconstruction of the linear anisotropic stress \(\eta \). J. Cosmol. Astropart. Phys. 11(027), 1811 (2018). arXiv:1805.00027

    MathSciNet  Google Scholar 

  35. Reid, M.J., Braatz, J.A., Condon, J.J., Lo, K.Y., Kuo, C.Y., Impellizzeri, C.M.V., Henkel, C.: The megamaser cosmology project. IV. A direct measurement of the Hubble constant from UGC 3789. Astrophys. J. 767, 154 (2013). arXiv:1207.7292

    ADS  Google Scholar 

  36. Kuo, C., Braatz, J.A., Reid, M.J., Lo, F.K.Y., Condon, J.J., Impellizzeri, C.M.V., Henkel, C.: The megamaser cosmology project. V. An angular diameter distance to NGC 6264 at 140 Mpc. Astrophys. J. 767, 155 (2013). arXiv:1207.7273

    ADS  Google Scholar 

  37. Gao, F., Braatz, J.A., Reid, M.J., Lo, K.Y., Condon, J.J., Henkel, C., Kuo, C.Y., Impellizzeri, C.M.V., Pesce, D.W., Zhao, W.: The megamaser cosmology project. VIII. A geometric distance to NGC 5765b. Astrophys. J. 817(2), 128 (2016). arXiv:1511.08311

    ADS  Google Scholar 

  38. Di Valentino, E., Melchiorri, A., Silk, J.: Planck evidence for a closed universe and a possible crisis for cosmology. Nat. Astron. (2019). arXiv:1911.02087

  39. Carvalho, G.C., Bernui, A., Benetti, M., Carvalho, J.C., Alcaniz, J.S.: Baryon acoustic oscillations from the SDSS DR10 galaxies angular correlation function. Phys. Rev. D 93(2), 023530 (2016). arXiv:1507.08972

    ADS  Google Scholar 

  40. Alcaniz, J.S., Carvalho, G.C., Bernui, A., Carvalho, J.C., Benetti, M.: Measuring baryon acoustic oscillations with angular two-point correlation function. Fundam. Theor. Phys. 187, 11–19 (2017). arXiv:1611.08458

    Google Scholar 

  41. Carvalho, G.C., Bernui, A., Benetti, M., Carvalho, J.C., de Carvalho, E., Alcaniz, J.S.: Measuring the transverse baryonic acoustic scale from the SDSS DR11 galaxies. arXiv:1709.00271

  42. ESA Cosmological Data webpage on wikipedia. https://wiki.cosmos.esa.int/

  43. Csaki, C., Kaloper, N., Terning, J.: Exorcising w \(<\) \(-1\). Ann. Phys. 317, 410–422 (2005). arXiv:astro-ph/0409596

    ADS  MathSciNet  MATH  Google Scholar 

  44. Csaki, C., Kaloper, N., Terning, J.: The accelerated acceleration of the universe. J. Cosmol. Astropart. Phys. 0606, 022 (2006). arXiv:astro-ph/0507148

    ADS  Google Scholar 

  45. Riess, A.G., Casertano, S., Yuan, W., Macri, L.M., Scolnic, D.: Large Magellanic Cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond \(\Lambda \)CDM. Astrophys. J. 876(1), 85 (2019). arXiv:1903.07603

    ADS  Google Scholar 

  46. Aviles, A., Bravetti, A., Capozziello, S., Luongo, O.: Precision cosmology with Pade rational approximations: theoretical predictions versus observational limits. Phys. Rev. D 90(4), 043531 (2014). arXiv:1405.6935

    ADS  Google Scholar 

  47. Blas, D., Lesgourgues, J., Tram, T.: The cosmic linear anisotropy solving system (CLASS) II: approximation schemes. J. Cosmol. Astropart. Phys. 1107, 034 (2011). arXiv:1104.2933

    ADS  Google Scholar 

  48. Maldacena, J.M., Nunez, C.: Supergravity description of field theories on curved manifolds and a no go theorem. Int. J. Mod. Phys. A 16, 822–855 (2001). arXiv:hep-th/0007018

    ADS  MathSciNet  MATH  Google Scholar 

  49. Kachru, S., Kallosh, R., Linde, A.D., Trivedi, S.P.: De Sitter vacua in string theory. Phys. Rev. D 68, 046005 (2003). arXiv:hep-th/0301240

    ADS  MathSciNet  MATH  Google Scholar 

  50. Conlon, J.P., Quevedo, F.: Astrophysical and cosmological implications of large volume string compactifications. J. Cosmol. Astropart. Phys. 0708, 019 (2007). arXiv:0705.3460

    ADS  MathSciNet  Google Scholar 

  51. Danielsson, U.H., Van Riet, T.: What if string theory has no de Sitter vacua? Int. J. Mod. Phys. D 27(12), 1830007 (2018). arXiv:1804.01120

    ADS  MathSciNet  Google Scholar 

  52. Witten, E.: Quantum gravity in de Sitter space. In: Strings 2001: International Conference Mumbai, India, 5–10 Jan 2001. arXiv:hep-th/0106109

  53. Goheer, N., Kleban, M., Susskind, L.: The trouble with de Sitter space. J. High Energy Phys. 07, 056 (2003). arXiv:hep-th/0212209

    ADS  MathSciNet  Google Scholar 

  54. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). arXiv:hep-th/9711200 [Adv. Theor. Math. Phys. 2, 231(1998)]

    MathSciNet  MATH  Google Scholar 

  55. Bousso, R., Polchinski, J.: Quantization of four form fluxes and dynamical neutralization of the cosmological constant. J. High Energy Phys. 06, 006 (2000). arXiv:hep-th/0004134

    ADS  MathSciNet  MATH  Google Scholar 

  56. Hartle, J.B., Hawking, S.W., Hertog, T.: Accelerated expansion from negative \(\Lambda \). arXiv:1205.3807

  57. Agrawal, P., Obied, G., Steinhardt, P.J., Vafa, C.: On the cosmological implications of the string swampland. Phys. Lett. B 784, 271–276 (2018). arXiv:1806.09718

    ADS  Google Scholar 

  58. Colgain, E.O., Van Putten, M.H.P.M., Yavartanoo, H.: Observational consequences of \(H_0\) tension in de Sitter Swampland. arXiv:1807.07451

  59. Weinberg, S.: Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607 (1987)

    ADS  Google Scholar 

  60. Barrow, J.D., Tipler, F.J.: The Anthropic Cosmological Principle. Oxford University Press, Oxford (1988)

    Google Scholar 

  61. Dutta, K., Roy, A., Ruchika, Sen, A.A., Sheikh-Jabbari, M.M.: Cosmology with low-redshift observations: no signal for new physics. Phys. Rev. D 100(10), 103501 (2019). arXiv:1908.07267

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Ravi Sheth and Fernando Quevedo for fruitful discussions and Eoin O’Colgain, Hossein Yavartanoo, Maurice van Putten for comments on the draft. MMShJ was supported by the Grants from ICTP NT-04, INSF junior chair in black hole physics, Grant No 950124. AS, MMShJ and KD would like to thank the hospitality of the Abdus-Salam ICTP, Italy, where this project was initiated. Ruchika acknowledges the funding from CSIR, Govt. of India under Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Sheikh-Jabbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, K., Roy, A., Ruchika et al. Beyond \(\Lambda \)CDM with low and high redshift data: implications for dark energy. Gen Relativ Gravit 52, 15 (2020). https://doi.org/10.1007/s10714-020-2665-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-2665-4

Keywords

Navigation