Skip to main content
Log in

On the smoothness of multi center coplanar black hole and membrane horizons

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the differentiability of the metric and other fields at any of the horizons of multi center Reissner–Nordstrom black hole solutions in \(d \ge 5\) and of multi center M2 brane solutions. The centers are distributed in a plane in transverse space, hence termed coplanar. We construct the Gaussian null co-ordinate system for the neighborhood of a horizon by solving the geodesic equations in expansions of (appropriate powers of) the affine parameter. Organizing the harmonic functions that appear in the solution in terms of what can be called generalized Gegenbauer polynomials is key to obtaining the solution to the geodesic equations in a compact and manageable form. We then compute the metric and other fields in the Gaussian null co-ordinate system and find that the differentiability of the coplanar solution is identical to the differentiability of the collinear solution (centers distributed on a line in transverse space). We end the paper with a conjecture on the degree of smoothness of the most general multi center solution, the one with centers distributed arbitrarily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Although, more recently, black hole solutions have been discovered differently [1]: one first solves the equations and determines the various possible near horizon solutions, subsequently then one solves the equations to obtain a solution that interpolates between a near horizon solution and the asymptotic solution.

  2. \(H = 1 + \frac{\mu _1}{r} + \frac{\mu _2}{\Vert \vec {r} - \vec {r}_2\Vert } + \frac{\mu _3}{\Vert \vec {r} - \vec {r}_3\Vert } +\ldots \); the first horizon is at \(r=0\).

  3. The conclusion per se is ours and should not be attributed to Candlish, which becomes clear after a reading of the journal version of his paper, which we had not been consulting. The initial arXiv version of [6] contains the line “The lack of smoothness present for higher dimensional black holes seems to be ubiquitous in situations where rotational symmetries of the single black hole solution are broken”; while the journal version contains the weaker statement “In the present case, the lack of smoothness would seem to be due to breaking one of the rotational symmetries of the BMPV black hole at the horizon.” We thank Candlish for correspondence on this issue after the first version of the present paper appeared on the arXiv.

  4. \(k = 3\) in the present paper and \(k \ge 4\) in [11].

References

  1. Gutowski, J.B., Reall, H.S.: Supersymmetric AdS(5) black holes. JHEP 0402, 006 (2004)

    Article  ADS  Google Scholar 

  2. Candlish, G.N., Reall, H.S.: On the smoothness of static multi-black hole solutions of higher-dimensional Einstein–Maxwell theory. Class. Quant. Gravity 24, 6025 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Welch, D.L.: On the smoothness of the horizons of multi-black hole solutions. Phys. Rev. D 52, 985 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gowdigere, C.N., Satpathy, S., Srivastava, Y.K.: On the smoothness of multi-M2 brane horizons. Class. Quant. Gravity 29, 245016 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gibbons, G.W., Horowitz, G.T., Townsend, P.K.: Higher dimensional resolution of dilatonic black hole singularities. Class. Quant. Gravity 12, 297 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Candlish, G.N.: On the smoothness of the multi-BMPV black hole spacetime. Class. Quant. Gravity 27, 065005 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Gauntlett, J.P., Gutowski, J.B.: Concentric black rings. Phys. Rev. D 71, 025013 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bena, I., Wang, C.W., Warner, N.P.: Sliding rings and spinning holes. JHEP 0605, 075 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. Friedrich, H., Racz, I., Wald, R.M.: On the rigidity theorem for space-times with a stationary event horizon or a compact Cauchy horizon. Commun. Math. Phys. 204, 691 (1999)

    Article  ADS  Google Scholar 

  10. Hartle, J.B., Hawking, S.W.: Solutions of the Einstein–Maxwell equations with many black holes. Commun. Math. Phys. 26, 87 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gowdigere, C.N.: On the smoothness of horizons in the most generic multi center black hole and membrane solutions. arXiv:1407.5338 [hep-th]

  12. Chrusciel, P.T., Singleton, D.B.: Nonsmoothness of event horizons of Robinson–Trautman black holes. Commun. Math. Phys. 147, 137 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  13. Codirla, C., Perry, M.J.: Compactification of supermembranes. Nucl. Phys. B 561, 43 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Myers, R.C.: Higher dimensional black holes in compactified space-times. Phys. Rev. D 35, 455 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  15. Kimura, M., Ishihara, H., Matsuno, K., Tanaka, T.: A simple diagnosis of non-smoothness of black hole horizon: curvature singularity at horizons in extremal Kaluza–Klein black holes. Class. Quant. Gravity 32(1), 015005 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Chethan N. Gowdigere and Yogesh K. Srivastava would like to thank Siddharth Satpathy for initial collaborations. Chethan N. Gowdigere would like to thank the very friendly staff at the various Cafe Coffee Day outlets in Bhubaneshwar, where quite a bit of his contribution to this work was done, for their warm hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chethan N. Gowdigere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Solution to geodesic equations in 5d

Here we provide the solutions to the geodesic equations described in (2.1.1). All the generalized Gegenbauer polynomials \({\mathcal {G}}_n\)’s appearing in this “Appendix” are the ones relevant for \(d = 5\), i.e. constructed out of five dimensional Gegenbauer polynomials.

$$\begin{aligned} r(\lambda )= & {} \sqrt{2}\mu _1^{1/4}\,\lambda ^{1/2} +\frac{1}{2\sqrt{2}\mu _1^{1/4}}{\mathcal {G}}_0 \,\lambda ^{3/2} +\frac{2}{5}{\mathcal {G}}_1\,\lambda ^2 \nonumber \\&-\,\frac{1}{48\sqrt{2} \mu _1^{3/4}}\left[ 3\, {\mathcal {G}}_0^2 - 32\mu _1\, {\mathcal {G}}_2\right] \lambda ^{5/2}-\frac{2}{35 \mu _1^{1/2}} \left[ {\mathcal {G}}_0 \,{\mathcal {G}}_1 \right. \nonumber \\&\left. -\,10 \mu _1\,{\mathcal {G}}_3 \right] \lambda ^3+\frac{1}{1600 \sqrt{2} \mu _1^{5/4}} \left[ 25\, {\mathcal {G}}_0^3 - 48 \mu _1\,{\mathcal {G}}_1^2 -2800 \mu _1\, (\partial _\Theta {\mathcal {G}}_1)^2\right. \nonumber \\&- \,2800 \mu _1\,\csc ^2\Theta \,(\partial _\Phi {\mathcal {G}}_1)^2 \left. +1600\mu _1^2\, {\mathcal {G}}_4 \right] \lambda ^{\frac{7}{2}} \nonumber \\&+ \,\frac{1}{126 \mu _1}\left[ 3\,{\mathcal {G}}_0^2 G_1 + 12\mu _1\,\mathcal{G}_0 G_3 -175 \mu _1 \, \partial _\Theta {\mathcal {G}}_1 \partial _\Theta {\mathcal {G}}_2 \right. \nonumber \\&-\,175 \mu _1 \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1 \partial _\Phi {\mathcal {G}}_2 \nonumber \\&\left. +\, 112 \mu _1^2\, \mathcal{G}_5 \right] \lambda ^4 -\frac{1}{1{,}612{,}800 \sqrt{2} \mu _1^{7/4}} \left[ 7875\, {\mathcal {G}}_0^4 -33{,}600\mu _1\,{\mathcal {G}}_0^2 {\mathcal {G}}_2 \right. \nonumber \\&- \,42{,}048\mu _1\, {\mathcal {G}}_0 {\mathcal {G}}_1^2 - 35{,}840\mu _1^2\, {\mathcal {G}}_2^2 \nonumber \\&- \,7{,}656{,}768\mu _1\,{\mathcal {G}}_0 (\partial _\Theta {\mathcal {G}}_1)^2 - 7{,}656{,}768\mu _1\,\csc ^2 \Theta \,\mathcal{G}_0 (\partial _\Phi {\mathcal {G}}_1)^2\nonumber \\&-\, 184{,}320\mu _1^2\, {\mathcal {G}}_1 {\mathcal {G}}_3 - 564{,}480\mu _1^2\, {\mathcal {G}}_0 {\mathcal {G}}_4 \nonumber \\&\left. +\, 967{,}680\mu _1^2\, (\partial _\Theta {\mathcal {G}}_2)^2 + 967{,}680\mu _1^2\, \csc ^2 \Theta (\partial _\Phi {\mathcal {G}}_2)^2\right. \nonumber \\&+ 2{,}322{,}432\mu _1^2\, \partial _\Theta {\mathcal {G}}_1 \partial _\Theta \mathcal{G}_3 \nonumber \\&\left. + \,2{,}322{,}432\mu _1^2\, \csc ^2 \Theta \partial _\Phi {\mathcal {G}}_1 \partial _\Phi {\mathcal {G}}_3 - 2{,}580{,}480 \mu _1^3\, {\mathcal {G}}_6 \right] \lambda ^{\frac{9}{2}}\nonumber \\&+ \,\frac{1}{57{,}750 \mu _1^{3/2}} \left[ -600\, {\mathcal {G}}_0^3\,+ 294 \mu _1\, {\mathcal {G}}_1^3 \right. \nonumber \\&+\, 1500\mu _1 \,{\mathcal {G}}_0 \, {\mathcal {G}}_1 \, {\mathcal {G}}_2 + 750\mu _1 \,{\mathcal {G}}_0^2\, {\mathcal {G}}_1 {\mathcal {G}}_3 + 279{,}825\mu _1\, {\mathcal {G}}_1 \, (\partial _\Theta \mathcal{G}_1)^2 \nonumber \\&+\, 279{,}825\mu _1\, \csc ^2 \Theta \,{\mathcal {G}}_1 \, (\partial _\Phi {\mathcal {G}}_1)^2 \nonumber \\&+\, 208{,}775\mu _1\, {\mathcal {G}}_0\, \partial _\Theta {\mathcal {G}}_1\,\partial _\Theta {\mathcal {G}}_2 + 208{,}775\mu _1\, \cos ^2 \Theta \, {\mathcal {G}}_0\, \partial _\Phi \mathcal{G}_1\,\partial _\Phi {\mathcal {G}}_2 \nonumber \\&-\, 34{,}125 \mu _1\, ( \partial _\Theta {\mathcal {G}}_1)^2 \, \partial ^2_\Theta {\mathcal {G}}_1 \nonumber \\&-\,34{,}125 \mu _1\, \csc ^4 \Theta \,( \partial _\Phi {\mathcal {G}}_1)^2 \, \partial ^2_\Phi {\mathcal {G}}_1 - 68{,}250 \mu _1\, \csc ^2\Theta \, \partial _\Theta {\mathcal {G}}_1\, \partial _\Phi \mathcal{G}_1\,\partial ^2_{\Theta \Phi } {\mathcal {G}}_1 \nonumber \\&+\, 34{,}125\mu _1\, \cot \Theta \, \csc ^2 \Theta \, (\partial _\Phi \mathcal{G}_1)^2 \, \partial _\Theta {\mathcal {G}}_1 + 6000\mu _1^2\, {\mathcal {G}}_2\, {\mathcal {G}}_3 \nonumber \\&+\, 12{,}600\mu _1^2\, {\mathcal {G}}_1\, {\mathcal {G}}_4 + 28{,}000\mu _1^2\, {\mathcal {G}}_0\, {\mathcal {G}}_5 \nonumber \\&-\, 47{,}250 \mu _1^2\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_4 - 47{,}250 \mu _1^2\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_4 \nonumber \\&-\, 38{,}850 \mu _1^2 \, \partial _\Theta {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_3 \nonumber \\&\left. -\, 38{,}850 \mu _1^2 \, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2\, \partial _\Phi {\mathcal {G}}_3 + 84{,}000 \mu _1^3\,{\mathcal {G}}_7 \right] \lambda ^5 + \cdots \end{aligned}$$
(A.1)
$$\begin{aligned} \theta (\lambda )= & {} \Theta + \frac{\sqrt{2} }{\mu _1^{1/4}} \partial _\Theta {\mathcal {G}}_1\,\lambda ^{3/2} + \frac{3}{4} \partial _\Theta {\mathcal {G}}_2 \,\lambda ^2 \nonumber \\&-\frac{1}{10 \sqrt{2} \mu _1^{3/4}} \left[ 17 \,{\mathcal {G}}_0 \partial _\Theta {\mathcal {G}}_1 - 8 \mu _1\, \partial _\Theta {\mathcal {G}}_3 \right] \lambda ^{5/2} + \frac{1}{20 \mu _1^{1/2}} \left[ -31\, {\mathcal {G}}_1 \partial _\Theta {\mathcal {G}}_1 \right. \nonumber \\&+\, 5\, \partial _\Theta {\mathcal {G}}_1 \, \partial ^2_\Theta {\mathcal {G}}_1 - 10 \, {\mathcal {G}}_0\, \partial _\Theta {\mathcal {G}}_2 + 15\, \cot \Theta \, \csc ^2 \Theta \, (\partial _\Phi {\mathcal {G}}_1)^2 \nonumber \\&\left. +\, 5\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_1 + 10 \mu _1\, \partial _\Theta {\mathcal {G}}_4 \right] \lambda ^3 \nonumber \\&+ \frac{1}{560 \sqrt{2} \mu _1^{5/4}} \left[ 937\, {\mathcal {G}}_0^2\, \partial _\Theta {\mathcal {G}}_1 - 1568\mu _1\, {\mathcal {G}}_2 \, \partial _\Theta {\mathcal {G}}_1 + 192 \mu _1\, \partial _\Theta {\mathcal {G}}_1\,\partial ^2_\Theta {\mathcal {G}}_2 \right. \nonumber \\&-\,576\mu _1\, {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_2 - 208\mu _1\, \mathcal{G}_0 \, \partial _\Theta {\mathcal {G}}_3 \nonumber \\&+\, 72 \mu _1\, \partial _\Theta {\mathcal {G}}_2\, \partial ^2_\Theta {\mathcal {G}}_1 + 72 \mu _1\, \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_2 \, \partial ^2_{\Theta \Phi } {\mathcal {G}}_1 \nonumber \\&+ 576 \mu _1\, \cot \Theta \, \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi \mathcal{G}_2 \nonumber \\&\left. +\, 192 \mu _1\,\csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1 \partial ^2_{\Theta \Phi }{\mathcal {G}}_2 + 384 \mu _1^2\, \partial _\Theta {\mathcal {G}}_5 \right] \lambda ^{7/2} + \cdots \end{aligned}$$
(A.2)
$$\begin{aligned} \phi (\lambda )= & {} \Phi + \frac{\sqrt{2}}{\mu _1^{1/4}} \csc ^2\Theta \,\partial _\Phi {\mathcal {G}}_1\,\lambda ^{3/2} + \frac{3}{4} \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2 \,\lambda ^2 \nonumber \\&-\frac{1}{10 \sqrt{2} \mu _1^{3/4}} \csc ^2 \Theta \left[ 17 \,{\mathcal {G}}_0 \partial _\Phi {\mathcal {G}}_1 - 8 \mu _1\, \partial _\Phi {\mathcal {G}}_3 \right] \lambda ^{5/2} \nonumber \\&+ \frac{1}{20 \mu _1^{1/2}} \csc ^2 \Theta \left[ -31\, {\mathcal {G}}_1 \, \partial _\Phi {\mathcal {G}}_1+ 5\, \partial _\Theta {\mathcal {G}}_1 \partial ^2_{\Theta \Phi }{\mathcal {G}}_1 -10\, {\mathcal {G}}_0 \,\partial _\Phi {\mathcal {G}}_2 \right. \nonumber \\&+ \,5 \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial ^2_\Phi {\mathcal {G}}_1 \left. - 40 \cot \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_1+ 10 \mu _1\, \partial _\Phi \mathcal{G}_4\right] \lambda ^3 \nonumber \\&+ \frac{1}{560 \sqrt{2} \mu _1^{5/4}} \csc ^2 \Theta \left[ 937\, {\mathcal {G}}_0^2\,\partial _\Phi {\mathcal {G}}_1 - 1568\mu _1\, {\mathcal {G}}_2\, \partial _\Phi {\mathcal {G}}_1 \right. \nonumber \\&+\, 192 \mu _1\, \partial _\Theta {\mathcal {G}}_1\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_2 - 576 \mu _1\, {\mathcal {G}}_1 \, \partial _\Phi {\mathcal {G}}_2 -208 \mu _1\, {\mathcal {G}}_0\,\partial _\Phi {\mathcal {G}}_3 \nonumber \\&+\, 72 \mu _1\, \partial _\Theta {\mathcal {G}}_2\, \partial ^2_{\Theta \Phi } {\mathcal {G}}_1 + 72 \mu _1\,\csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2\, \partial ^2_{\Phi }{\mathcal {G}}_1 - 960\mu _1\, \cot \Theta \, \partial _\Phi {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_1 \nonumber \\&-\, 720\mu _1\, \cot \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_2\nonumber \\&\left. +\, 192\mu _1\, \csc ^2 \Theta \, \partial _\Phi \mathcal{G}_1 \, \partial ^2_{\Phi } {\mathcal {G}}_2 + 384 \mu _1^2 \, \partial _\Phi {\mathcal {G}}_5 \right] \lambda ^{7/2} + \cdots \end{aligned}$$
(A.3)
$$\begin{aligned} T(\lambda , \Theta , \Phi )= & {} - \frac{\mu _1}{4}\,\lambda ^{-1} + \frac{3\mu _1^{1/2}}{4} \, {\mathcal {G}}_0 \log \lambda + \frac{8 \sqrt{2}\mu _1^{3/4}}{5} \, {\mathcal {G}}_1 \lambda ^{1/2} \nonumber \\&+ \frac{1}{48} \left[ 33 {\mathcal {G}}_0^2 + 80 \mu _1\,{\mathcal {G}}_2 \right] \lambda \nonumber \\&+ \frac{2\sqrt{2}\mu _1^{1/4}}{35}\,\left[ 19\,\mathcal{G}_0\, {\mathcal {G}}_1 + 20\, \mu _1\, {\mathcal {G}}_3 \right] \lambda ^{3/2} \nonumber \\&+\frac{1}{400 \mu _1^{1/2}} \left[ 25\, {\mathcal {G}}_0^3 + 363 \mu _1\, {\mathcal {G}}_1^2 + 750 \mu _1\, {\mathcal {G}}_0\, {\mathcal {G}}_2 \right. \nonumber \\&\left. +\, 575 \mu _1 \, (\partial _\Theta {\mathcal {G}}_1)^2 + 575 \mu _1 \,\csc ^2 \Theta \, (\partial _\Phi {\mathcal {G}}_1)^2 + 700\mu _1^2\, {\mathcal {G}}_4 \right] \lambda ^2 \nonumber \\&+ \frac{1}{630 \sqrt{2} \mu _1^{1/4}} \left[ 345 \,{\mathcal {G}}_0^2\, {\mathcal {G}}_1 + 2016\mu _1\, {\mathcal {G}}_1 \, {\mathcal {G}}_2 \right. \nonumber \\&+ \,2136\mu _1\, {\mathcal {G}}_0\, {\mathcal {G}}_3 + 1736 \mu _1\, \partial _\Theta {\mathcal {G}}_1 \, \partial _\Theta \mathcal{G}_2 + 1736 \mu _1\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1 \, \partial _\Phi {\mathcal {G}}_2 \nonumber \\&\left. +\, 1792\mu _1^2\, {\mathcal {G}}_5 \right] \lambda ^{5/2} \nonumber \\&+ \frac{1}{100{,}800 \mu _1} \left[ -1575 {\mathcal {G}}_0^4 + 71{,}400 \mu _1\, {\mathcal {G}}_0^2\,{\mathcal {G}}_2 + 65{,}124\mu _1 \,\mathcal{G}_0\, {\mathcal {G}}_1^2 \right. \nonumber \\&+ \,2772\mu _1\, {\mathcal {G}}_0\, (\partial _\Theta {\mathcal {G}}_1)^2 + 2772\mu _1\, \csc ^2\Theta \,\mathcal{G}_0\, (\partial _\Phi {\mathcal {G}}_1)^2 \nonumber \\&+ \,143{,}360\mu _1^2\, {\mathcal {G}}_2^2 + 293{,}760\mu _1^2\, {\mathcal {G}}_1 \,{\mathcal {G}}_3 + 317{,}520\mu _1^2\, \mathcal{G}_0\, {\mathcal {G}}_4 \nonumber \\&+\, 60{,}480 \mu _1^2\, (\partial _\Theta {\mathcal {G}}_2)^2 + 60{,}480 \mu _1^2\, \csc ^2 \Theta (\partial _\Phi {\mathcal {G}}_2)^2\nonumber \\&+ 185{,}472 \mu _1^2\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_3 \nonumber \\&\left. +\, 185{,}472 \mu _1^2\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_3 + 241{,}920 \mu _1^3\, {\mathcal {G}}_6 \right] \lambda ^3 \nonumber \\&+\frac{1}{231{,}000 \sqrt{2} \mu _1^{3/4}} \left[ -18{,}525\, \mathcal{G}_0^3\, {\mathcal {G}}_1 + 105{,}264 \mu _1\, {\mathcal {G}}_1^3 \right. \nonumber \\&+ \,696{,}000\mu _1\, {\mathcal {G}}_0 \,{\mathcal {G}}_1\, {\mathcal {G}}_2 + 397{,}500 \mu _1 \,{\mathcal {G}}_0^2\, {\mathcal {G}}_3 - 49{,}200\mu _1\, {\mathcal {G}}_1 \, (\partial _\Theta {\mathcal {G}}_1)^2 \nonumber \\&-\, 49{,}200\mu _1\, \csc ^2\Theta \, \mathcal{G}_1 \, (\partial _\Phi {\mathcal {G}}_1)^2 + 204{,}000 \mu _1\, (\partial _\Theta {\mathcal {G}}_1)^2\, \partial ^2_\Theta {\mathcal {G}}_1 \nonumber \\&+\,204{,}000 \mu _1\, \csc ^4\Theta \,(\partial _\Phi {\mathcal {G}}_1)^2\, \partial ^2_\Phi {\mathcal {G}}_1 + 241{,}000 \mu _1\, {\mathcal {G}}_0\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_2 \nonumber \\&+\, 241{,}000 \mu _1\,\csc ^2 \Theta \, {\mathcal {G}}_0\, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_2\nonumber \\&+ 408{,}000\mu _1\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_1\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_1\nonumber \\&-\, 204{,}000 \mu _1 \cot \Theta \, \csc ^2 \Theta \, (\partial _\Phi \mathcal{G}_1)^2\,\partial _\Theta {\mathcal {G}}_1 + 1{,}200{,}000\mu _1^2\, \mathcal{G}_2\, {\mathcal {G}}_3 \nonumber \\&+\, 1{,}252{,}800\mu _1^2 \, {\mathcal {G}}_1\, {\mathcal {G}}_4 + 1{,}376{,}000\mu _1^2\, {\mathcal {G}}_0 \, {\mathcal {G}}_5 + 648{,}000 \mu _1^2 \, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_4 \nonumber \\&+\, 648{,}000 \mu _1^2 \,\csc ^2\Theta \,\partial _\Phi \mathcal{G}_1\, \partial _\Phi {\mathcal {G}}_4 + 348{,}000 \mu _1^2\, \partial _\Theta {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_3 \nonumber \\&\left. +\, 348{,}000 \mu _1^2\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2\, \partial _\Phi {\mathcal {G}}_3 + 960{,}000\mu _1^3\, {\mathcal {G}}_7 \right] \lambda ^{7/2} + \cdots \end{aligned}$$
(A.4)

Solution to geodesic equations in \(d \ge 6\)

Here we provide the solutions to the geodesic equations described in (2.2.1). All the generalized Gegenbauer polynomials \({\mathcal {G}}_n\)’s appearing in this “Appendix” are the ones relevant for generic \(d > 5\), i.e. constructed out of \(d > 5\) dimensional Gegenbauer polynomials.

$$\begin{aligned} r(\lambda )= & {} (d-3)^{1/{d-3}}\, \mu _1^{\frac{d-4}{(d-3)^2}}\, \lambda ^{1/{d-3}}\nonumber \\&+ \sum _{l=-3}^{d-7} \left[ \frac{d-4}{2d+l-3}\,(d-3)^{\frac{l+4}{d-3}}\, \mu _1^{\frac{d(l+3)-4l-13}{(d-3)^2}}\,{\mathcal {G}}_{l+3} \, \left( \lambda ^{1/{d-3}} \right) ^{d+l+1} \right] \nonumber \\&+ \frac{d-4}{24\, (d-3)^2} \, (d-3)^{\frac{1}{d-3}}\,\mu _1^{-\frac{d-2}{(d-3)^2}}\,\left[ (d-2) (d-6) \,{\mathcal {G}}_0^2 \right. \nonumber \\&\left. +\, 8 (d-3)^2 \mu _1 \,{\mathcal {G}}_{d-3} \right] (\lambda ^{1/{d-3}})^{2 d - 5} \nonumber \\&+ \frac{d-4}{2 (d-3) (2 d-5) (3 d - 8)} (d-3)^{\frac{2 }{d-3}}\mu _1^{-\frac{2}{(d-3)^2}} \nonumber \\&\left[ (d-1) \left( d^2-8 d+14\right) {\mathcal {G}}_0\, {\mathcal {G}}_1 \right. \nonumber \\&\left. + \,2 (d-3)^2 (2 d-5) \mu _1\,{\mathcal {G}}_{d-2} \right] (\lambda ^{1/{d-3}})^{2d - 4} + \cdots \end{aligned}$$
(B.1)
$$\begin{aligned} \theta (\lambda )= & {} \Theta + \sum _{l = 0}^{d-4} \frac{d-2}{(d+l-2)\,(l+1)}\,(d-3)^{\frac{l+1}{d-3}}\, \mu _1^{\frac{(d-4)l-1}{(d-3)^2}}\,\nonumber \\&\partial _\Theta {\mathcal {G}}_{l+1}\,(\lambda ^{1/{d-3}})^{l+d-2} + \cdots \end{aligned}$$
(B.2)
$$\begin{aligned} \phi (\lambda )= & {} \Phi + \sum _{l = 0}^{d-4} \frac{d-2}{(d+l-2)\,(l+1)}\,(d-3)^{\frac{l+1}{d-3}}\, \mu _1^{\frac{(d-4)l-1}{(d-3)^2}}\,\nonumber \\&\csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_{l+1}\,(\lambda ^{1/{d-3}})^{l+d-2} + \cdots \end{aligned}$$
(B.3)
$$\begin{aligned} T(\lambda , \Theta , \Phi )= & {} - \frac{1}{(d-3)^2}\,\mu _1^{2/{d-3}}\, \lambda ^{-1} \left[ 1 - (d -2)\,\mu _1^{-1/{d-3}}\,{\mathcal {G}}_0 \, \lambda \,\log \lambda \right. \nonumber \\&\left. - \sum _{l=1}^{d-4} \frac{2 d + 2 l - 4}{l\,(2 d + l - 6)}\,(d-3)^{2+ \frac{l}{d-3}} \,\mu _1^{\frac{l(d-4)-d+3}{(d-3)^2}}\,{\mathcal {G}}_l \, \lambda ^{\frac{d + l -3}{d-3}} + \cdots \right] \nonumber \\ \end{aligned}$$
(B.4)

Solution to geodesic equations in 11d

Here we provide the solutions to the geodesic equations described in (3.1). All the generalized Gegenbauer polynomials \({\mathcal {G}}_n\)’s appearing in this “Appendix” are the ones relevant for the eleven dimensional membrane harmonic function, i.e. constructed out of \(d = 9\) dimensional Gegenbauer polynomials.

$$\begin{aligned} r(\lambda )= & {} \sqrt{2}\mu _1^{1/{12}}\lambda ^{1/2} + \frac{1}{2\sqrt{2}\mu _1^{5/{12}}}{\mathcal {G}}_0\,\lambda ^{7/2} + \frac{8}{27 \mu _1^{1/3}}\,{\mathcal {G}}_1 \,\lambda ^4 \nonumber \\&+\frac{4\sqrt{2} }{15 \mu _1^{1/4}} {\mathcal {G}}_2\, \lambda ^{9/2} + \frac{16}{33 \mu _1^{1/6}} {\mathcal {G}}_3\, \lambda ^5\nonumber \\&+ \frac{4 \sqrt{2}}{9 \mu _1^{1/{12}}} {\mathcal {G}}_4\, \lambda ^{{11}/2} + \frac{32}{39} \mathcal{G}_5\, \lambda ^6 + \frac{1}{252 \sqrt{2} \mu _1^{11/12}} \left[ - 119 \, {\mathcal {G}}_0^2 + 384 \mu _1 {\mathcal {G}}_6 \right] \lambda ^{{13}/2}\nonumber \\&+ \frac{32}{405 \mu _1^{5/6}} \left[ -11 {\mathcal {G}}_0 \,{\mathcal {G}}_1 + 18\mu _1\, {\mathcal {G}}_7 \right] \lambda ^7 \nonumber \\&+ \frac{\sqrt{2}}{127{,}575 \mu _1^{3/4}} \left[ -102{,}060\, {\mathcal {G}}_0 \,{\mathcal {G}}_2 - 51{,}625\, {\mathcal {G}}_1^2 - 2673 \, (\partial _\Theta {\mathcal {G}}_1)^2 \right. \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\left. - \,2673 \, \csc ^2 \Theta \, (\partial _\Phi {\mathcal {G}}_1)^2 + 170{,}100\mu _1\, \mathcal{G}_8 \right] \lambda ^{{15}/2} \nonumber \\&+\frac{4}{58{,}905 \mu _1^{2/3}} \left[ - 21{,}700\, {\mathcal {G}}_0\, {\mathcal {G}}_3 - 22{,}176\, {\mathcal {G}}_1 \,{\mathcal {G}}_2 - 935\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_2 \right. \nonumber \\&\left. -\, 935 \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_2 + 36{,}960 \mu _1 \,{\mathcal {G}}_9 \right] \lambda ^8 \nonumber \\&+ \frac{2 \sqrt{2}}{467{,}775 \mu _1^{7/12}}\left[ -165{,}396 \,{\mathcal {G}}_2^2 - 327{,}600\, {\mathcal {G}}_1\, {\mathcal {G}}_3- 317{,}625 \mathcal{G}_0\, {\mathcal {G}}_4 \right. \nonumber \\&-\, 5775 (\partial _\Theta {\mathcal {G}}_2)^2 - 11{,}440 \, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_3 \nonumber \\&\left. -\, 5775 \csc ^2 \Theta (\partial _\Phi {\mathcal {G}}_2)^2 - 11{,}440 \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_3 + 554{,}400 \mu _1\, {\mathcal {G}}_{10}\right] \lambda ^{{17}/2} \nonumber \\&+\frac{8}{23{,}108{,}085 \mu _1^{1/2}}\left[ - 7{,}665{,}840\, {\mathcal {G}}_2\, {\mathcal {G}}_3 - 7{,}527{,}520 \, {\mathcal {G}}_1\, {\mathcal {G}}_4 - 7{,}234{,}920 \, {\mathcal {G}}_0\, {\mathcal {G}}_5 \right. \nonumber \\ \end{aligned}$$
$$\begin{aligned}&-\, 225{,}225\, \partial _\Theta {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_3 - 220{,}077 \, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_4 - 225{,}225\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2\, \partial _\Phi {\mathcal {G}}_3 \nonumber \\&\left. -\, 220{,}077 \,\csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_4 + 12{,}972{,}960 \mu _1 \,{\mathcal {G}}_{11} \right] \lambda ^9 \nonumber \\&+ \,\frac{1}{1{,}248{,}647{,}400 \sqrt{2} \mu _1^{17/12}}\left[ 1{,}534{,}988{,}455 \,{\mathcal {G}}_0^3 - 3{,}133{,}428{,}480 \mu _1\, {\mathcal {G}}_3^2 \right. \nonumber \\&-\, 6{,}215{,}489{,}280 \mu _1\, {\mathcal {G}}_2\, {\mathcal {G}}_4 - 6{,}056{,}117{,}760 \mu _1\, {\mathcal {G}}_1\, {\mathcal {G}}_5\nonumber \\&- 5{,}771{,}525{,}760 \mu _1\, {\mathcal {G}}_0\, {\mathcal {G}}_6 \nonumber \\ \end{aligned}$$
$$\begin{aligned}&-\, 78{,}524{,}160 \mu _1\, (\partial _\Theta {\mathcal {G}}_3)^2 - 155{,}387{,}232 \mu _1 \, \partial _\Theta {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_4 \nonumber \\&-\, 149{,}140{,}992 \mu _1\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_5 - 78{,}524{,}160 \mu _1\, \csc ^2 \Theta \, (\partial _\Phi {\mathcal {G}}_3)^2\nonumber \\&-\, 155{,}387{,}232 \mu _1 \, \csc ^2 \Theta \,\partial _\Phi {\mathcal {G}}_2\, \partial _\Phi {\mathcal {G}}_4 - 149{,}140{,}992 \mu _1\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_5 \nonumber \\&\left. +\, 10{,}655{,}124{,}480 \mu _1^2\, {\mathcal {G}}_{12}\right] \lambda ^{{19}/2} \nonumber \\&+ \frac{16}{42{,}567{,}525 \mu _1^{4/3}} \left[ 9{,}214{,}205\, {\mathcal {G}}_0^2 \, {\mathcal {G}}_1 - 12{,}612{,}600 \mu _1\, \mathcal{G}_3\, {\mathcal {G}}_4\right. \nonumber \\&\left. - 12{,}418{,}560 \mu _1\, {\mathcal {G}}_2\, {\mathcal {G}}_5\right. \nonumber \\&-\, 12{,}012{,}000 \mu _1\, {\mathcal {G}}_1\, {\mathcal {G}}_6- 11{,}351{,}340 \mu _1 \, {\mathcal {G}}_0\,{\mathcal {G}}_7 - 272{,}415 \mu _1\, \partial _\Theta {\mathcal {G}}_3\, \partial _\Theta {\mathcal {G}}_4 \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\, 266{,}175 \mu _1 \,\partial _\Theta {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_5 - 249{,}678 \mu _1\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_6 \nonumber \\&-\, 272{,}415 \mu _1\, \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_3\, \partial _\Phi {\mathcal {G}}_4 + 266{,}175 \mu _1 \, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2\, \partial _\Phi \mathcal{G}_5 \nonumber \\&-\, 249{,}678 \mu _1\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_6 \left. + 21{,}621{,}600 \mu _1^2\, {\mathcal {G}}_{13} \right] \lambda ^{10} \nonumber \\&+ \frac{1}{120{,}405{,}285 \sqrt{2} \mu _1^{5/4}} \left[ 781{,}539{,}759\,{\mathcal {G}}_0^2\, {\mathcal {G}}_2 + 788{,}124{,}337 \, {\mathcal {G}}_0 \, {\mathcal {G}}_1^2 \right. \nonumber \\&+\, 29{,}930{,}553 {\mathcal {G}}_0\, ( \partial _\Theta {\mathcal {G}}_1)^2 + 29{,}930{,}553 \mathcal{G}_0\, \csc ^2 \Theta \, ( \partial _\Phi {\mathcal {G}}_1)^2\nonumber \\ \end{aligned}$$
$$\begin{aligned}&- 542{,}702{,}160 \mu _1\, {\mathcal {G}}_4^2 \nonumber \\&-\, 1{,}077{,}753{,}600 \mu _1 \, {\mathcal {G}}_3\, \mathcal{G}_5 - 1{,}054{,}145{,}664 \mu _1\, {\mathcal {G}}_2 \, {\mathcal {G}}_6\nonumber \\&- 1{,}012{,}467{,}456 \mu _1\, {\mathcal {G}}_1\, {\mathcal {G}}_7 \nonumber \\&-\, 948{,}647{,}700 \mu _1\, {\mathcal {G}}_0 \, {\mathcal {G}}_8 - 10{,}216{,}206 \mu _1\, (\partial _\Theta {\mathcal {G}}_4)^2\nonumber \\&- 20{,}217{,}600 \mu _1\, \partial _\Theta {\mathcal {G}}_3\, \partial _\Theta {\mathcal {G}}_5 \nonumber \\&-\, 19{,}459{,}440 \mu _1\, \partial _\Theta {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_6 - 17{,}729{,}280 \mu _1\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_7 \nonumber \\ \end{aligned}$$
$$\begin{aligned}&-\, 10{,}216{,}206 \mu _1\, \csc ^2 \Theta \, (\partial _\Phi {\mathcal {G}}_4)^2 - 20{,}217{,}600 \mu _1\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_3\, \partial _\Phi \mathcal{G}_5 \nonumber \\&-\, 19{,}459{,}440 \mu _1\, \csc ^2 \Theta \, \partial _\Phi \mathcal{G}_2\, \partial _\Phi {\mathcal {G}}_6- 17{,}729{,}280 \mu _1\, \csc ^2 \Theta \, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_7 \nonumber \\&\left. +\, 1{,}868{,}106{,}240 \mu _1^2 \,{\mathcal {G}}_{14} \right] \lambda ^{{21}/2} + \cdots \end{aligned}$$
(C.1)
$$\begin{aligned} \theta (\lambda )= & {} \Theta + \frac{4 \sqrt{2}}{35 \mu _1^{5/12}}\partial _\Theta {\mathcal {G}}_1 \, \lambda ^{7/2} + \frac{1}{6 \mu _1^{1/3}} \partial _\Theta {\mathcal {G}}_2\,\lambda ^4 + \frac{8 \sqrt{2} }{63 \mu _1^{1/4}} \partial _\Theta \mathcal{G}_3\,\lambda ^{9/2} \nonumber \\&+\frac{1}{5 \mu _1^{1/6}} \partial _\Theta {\mathcal {G}}_4\, \lambda ^5 + \frac{16 \sqrt{2}}{99 \mu _1^{1/{12}}} \partial _\Theta {\mathcal {G}}_5\, \lambda ^{{11}/2} \nonumber \\&+ \frac{4}{15} \partial _\Theta {\mathcal {G}}_6\, \lambda ^6 + \frac{2 \sqrt{2}}{2145 \mu _1^{11/12}} \left[ - 241\, {\mathcal {G}}_0\,\partial _\Theta \mathcal{G}_1 + 240 \mu _1 \,\partial _\Theta {\mathcal {G}}_7\right] \lambda ^{{13}/2} \nonumber \\&+ \frac{2}{33{,}075 \mu _1^{5/6}} \left[ -6790 \, {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_1 - 5775\, {\mathcal {G}}_0\, \partial _\Theta {\mathcal {G}}_2 + 90 \,\partial _\Theta {\mathcal {G}}_1 \, \partial ^2_\Theta {\mathcal {G}}_1 \right. \nonumber \\&\left. + \,90\, \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_1 \, \partial ^2_{\Theta \Phi }{\mathcal {G}}_1 + 126 \cot \Theta \, \csc ^2 \Theta \, (\partial _\Phi {\mathcal {G}}_1)^2 + 6300 \mu _1 \, \partial _\Theta {\mathcal {G}}_8 \right] \lambda ^7 \nonumber \\&+\frac{2 \sqrt{2}}{184{,}275 \mu _1^{3/4}} \left[ - 34{,}776 \, {\mathcal {G}}_2 \, \partial _\Theta {\mathcal {G}}_1 - 29{,}680\, {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_2 - 25{,}650\, {\mathcal {G}}_0\, \partial _\Theta {\mathcal {G}}_3 \right. \nonumber \\&+ 315 \, \partial _\Theta {\mathcal {G}}_2\, \partial ^2_\Theta {\mathcal {G}}_1 + 432 \, \partial _\Theta {\mathcal {G}}_1 \, \partial ^2_\Theta {\mathcal {G}}_2 + 315\, \csc ^2 \Theta \, \partial _ \Phi \mathcal{G}_2\, \partial ^2_{\Theta \Phi } {\mathcal {G}}_1 \nonumber \\&\left. + 432 \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_2 + 1008\, \cot \Theta \, \csc ^2 \Theta \, \partial _\Phi \mathcal{G}_1\, \partial _\Phi {\mathcal {G}}_2\right. \nonumber \\&\left. + 30{,}240 \mu _1\, \partial _\Theta {\mathcal {G}}_9\right] \lambda ^{{15}/2} \nonumber \\&+ \frac{1}{582{,}120 \mu _1^{2/3}}\left[ - 406{,}224 \, {\mathcal {G}}_3\, \partial _\Theta {\mathcal {G}}_1 - 347{,}424\, {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_2 - 301{,}840 \, {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_3 \right. \nonumber \\&-\, 263{,}340 \, {\mathcal {G}}_0\, \partial _\Theta {\mathcal {G}}_4 + 2640 \, \partial _\Theta {\mathcal {G}}_3\, \partial ^2_\Theta {\mathcal {G}}_1 + 3465 \, \partial _\Theta {\mathcal {G}}_2\, \partial ^2_\Theta {\mathcal {G}}_2 \nonumber \\&+\, 4752\, \partial _\Theta {\mathcal {G}}_1 \, \partial ^2_\Theta {\mathcal {G}}_3 + 2640 \, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_3\, \partial ^2_{\Theta \Phi } {\mathcal {G}}_1 + 3465\, \csc ^2 \Theta \, \partial _{\Phi }\mathcal{G}_2\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_2 \nonumber \\&+\, 4752\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial ^2_{\Theta \Phi } {\mathcal {G}}_3 + 4620\, \cot \Theta \, \csc ^2 \Theta \, (\partial _\Phi {\mathcal {G}}_2)^2\nonumber \\&\left. + \,9504\, \cot \Theta \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_3 + 332{,}640 \mu _1 \, \partial _\Theta {\mathcal {G}}_{10} \right] \lambda ^8 \nonumber \\&+ \frac{4 \sqrt{2}}{883{,}575 \mu _1^{7/12}}\left[ -143{,}220 \,\mathcal{G}_4\,\partial _\Theta {\mathcal {G}}_1 - 122{,}640\, {\mathcal {G}}_3 \partial _\Theta {\mathcal {G}}_2 \right. \nonumber \\&-\, 106{,}920 \, \mathcal{G}_2\, \partial _\Theta {\mathcal {G}}_3 - 93{,}940\, {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_4 - 82{,}390 \, {\mathcal {G}}_0\, \partial _\Theta {\mathcal {G}}_5 \nonumber \\&+\, 693 \, \partial _\Theta {\mathcal {G}}_4 \, \partial ^2_\Theta {\mathcal {G}}_1 + 880\, \partial _\Theta {\mathcal {G}}_3\, \partial ^2_\Theta {\mathcal {G}}_2 \nonumber \\&+\, 1155\, \partial _\Theta {\mathcal {G}}_2\, \partial ^2_\Theta {\mathcal {G}}_3 + 1584 \, \partial _\Theta {\mathcal {G}}_1\, \partial ^2_\Theta {\mathcal {G}}_4 + 693\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_4\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_1 \nonumber \\&+\, 880\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_3\, \partial ^2_{\Theta \Phi } \mathcal{G}_2 + 1155\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2\, \partial ^2_{\Theta \Phi } {\mathcal {G}}_3 \nonumber \\&+\, 1584\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial ^2_{\Theta \Phi } \mathcal{G}_4 + 2640\, \cot \Theta \, \csc ^2 \Theta \, \partial _\Phi \mathcal{G}_2\, \partial _\Phi {\mathcal {G}}_3 \nonumber \\&+\, 2772 \, \cot \Theta \, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_4 \left. + 110{,}880 \mu _1 \, \partial _\Theta {\mathcal {G}}_{11} \right] \lambda ^{{17}/2} + \cdots \end{aligned}$$
(C.2)
$$\begin{aligned} \phi (\lambda )= & {} \Phi + \frac{4 \sqrt{2}}{35 \mu _1^{5/12}}\csc ^2\Theta \,\partial _\Phi {\mathcal {G}}_1\, \lambda ^{7/2} \nonumber \\&+ \frac{1}{6 \mu _1^{1/3}} \csc ^2\Theta \,\partial _\Phi {\mathcal {G}}_2\, \lambda ^4 + \frac{8 \sqrt{2} }{63 \mu _1^{1/4}}\csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_3\, \lambda ^{9/2} \nonumber \\&+\,\frac{1}{5 \mu _1^{1/6}} \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_4\, \lambda ^5 + \frac{16 \sqrt{2}}{99 \mu _1^{1/{12}}} \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_5\, \lambda ^{{11}/2} \nonumber \\&+ \frac{4}{15} \csc ^2\Theta \,\partial _\Phi {\mathcal {G}}_6\, \lambda ^6 + \frac{2 \sqrt{2}}{2145 \mu _1^{11/12}}\csc ^2\Theta \, \left[ - 241\, {\mathcal {G}}_0 \,\partial _\Phi {\mathcal {G}}_1 \right. \nonumber \\&\left. +\, 240 \mu _1 \,\partial _\Phi {\mathcal {G}}_7 \right] \lambda ^{{13}/2} + \frac{2}{33{,}075 \mu _1^{5/6}} \csc ^2 \Theta \,\left[ - 6790\, {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_1 - 5775\, {\mathcal {G}}_0 \, \partial _\Phi \mathcal{G}_2 \right. \nonumber \\&+\, 90 \, \partial _\Theta {\mathcal {G}}_1\, \partial ^2_{\Theta \Phi } {\mathcal {G}}_1 + 90\, \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial ^2_\Phi {\mathcal {G}}_1 - 432 \, \cot \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_1 \nonumber \\ \end{aligned}$$
$$\begin{aligned}&\left. +\, 6300 \mu _1 \, \partial _\Phi {\mathcal {G}}_8 \right] \lambda ^7 + \frac{2 \sqrt{2}}{184{,}275 \mu _1^{3/4}} \csc ^2 \Theta \, \left[ - 34{,}776\, {\mathcal {G}}_2\,\partial _\Phi {\mathcal {G}}_1 \right. \nonumber \\&-\, 29{,}680 \, {\mathcal {G}}_1\,\partial _\Phi {\mathcal {G}}_2 - 25{,}650\, {\mathcal {G}}_0 \, \partial _\Phi {\mathcal {G}}_3 + 315\, \partial _\Theta {\mathcal {G}}_2\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_1\nonumber \\&+\, 432 \, \partial _\Theta \mathcal{G}_1 \, \partial ^2_{\Theta \Phi } {\mathcal {G}}_2 + 315 \, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2\, \partial ^2_\Phi {\mathcal {G}}_1 \nonumber \\&+\, 432\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial ^2_{\Phi }{\mathcal {G}}_2 - 1872 \, \cot \Theta \, \partial _\Phi {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_1\nonumber \\&\left. -\, 1638 \, \cot \Theta \, \partial _\Phi {\mathcal {G}}_1 \, \partial _\Theta \mathcal{G}_2 + 30{,}240 \mu _1 \, \partial _\Phi {\mathcal {G}}_9 \right] \lambda ^{{15}/2}\nonumber \\ \end{aligned}$$
$$\begin{aligned}&+ \frac{1}{582{,}120 \mu _1^{2/3}}\,\csc ^2\Theta \left[ -406{,}224\, {\mathcal {G}}_3\, \partial _\Phi {\mathcal {G}}_1 - 347{,}424\, {\mathcal {G}}_2 \, \partial _\Phi {\mathcal {G}}_2 \right. \nonumber \\&-\, 301{,}840 \, {\mathcal {G}}_1 \, \partial _\Phi {\mathcal {G}}_3 - 263{,}340 \, {\mathcal {G}}_0 \, \partial _\Phi {\mathcal {G}}_4 + 2640\, \partial _\Theta {\mathcal {G}}_3\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_1 \nonumber \\&+\, 3465 \, \partial _\Theta \mathcal{G}_2\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_2 + 4752\, \partial _\Theta {\mathcal {G}}_1\, \partial ^2_{\Theta \Phi } {\mathcal {G}}_3 + 2640 \, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_3 \, \partial ^2_{\Phi } {\mathcal {G}}_1\nonumber \\&+\, 3465\, \csc ^2 \Theta \, \partial _\Phi \mathcal{G}_2 \, \partial ^2_{\Phi } {\mathcal {G}}_2 + 4752 \, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial ^2_{\Phi } {\mathcal {G}}_3 \nonumber \\ \end{aligned}$$
$$\begin{aligned}&-\, 19{,}008 \, \cot \Theta \, \partial _\Phi {\mathcal {G}}_3 \, \partial _\Theta \mathcal{G}_1 - 16{,}170 \, \cot \Theta \, \partial _\Phi {\mathcal {G}}_2 \, \partial _\Theta {\mathcal {G}}_2 \nonumber \\&\left. - \,14{,}784\, \cot \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_3 + 332{,}640 \mu _1\, \partial _\Phi {\mathcal {G}}_{10} \right] \lambda ^8\nonumber \\&+ \frac{4 \sqrt{2}}{883{,}575 \mu _1^{7/12}} \csc ^2 \Theta \,\left[ - 143{,}220\, {\mathcal {G}}_4\, \partial _\Phi {\mathcal {G}}_1 - 122{,}640 \, {\mathcal {G}}_3\, \partial _\Phi {\mathcal {G}}_2 \right. \nonumber \\&-\, 106{,}920 \, {\mathcal {G}}_2 \, \partial _\Phi {\mathcal {G}}_3 - 93{,}940\, {\mathcal {G}}_1 \, \partial _\Phi {\mathcal {G}}_4 - 82{,}390\, {\mathcal {G}}_0 \, \partial _\Phi {\mathcal {G}}_5 \nonumber \\&+\, 693 \, \partial _\Theta {\mathcal {G}}_4\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_1 + 880\, \partial _\Theta {\mathcal {G}}_3\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_2 + 1155\, \partial _\Theta \mathcal{G}_2 \, \partial ^2_{\Theta \Phi }{\mathcal {G}}_3 \nonumber \\ \end{aligned}$$
$$\begin{aligned}&+\, 1584 \, \partial _\Theta {\mathcal {G}}_1\, \partial ^2_{\Theta \Phi }{\mathcal {G}}_4 + 693 \,\csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_4\, \partial ^2_{ \Phi }{\mathcal {G}}_1 \nonumber \\&+\, 880\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_3\, \partial ^2_{\Phi }{\mathcal {G}}_2 + 1155\,\csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2 \, \partial ^2_{ \Phi }{\mathcal {G}}_3 \nonumber \\&+\, 1584 \, \csc ^2 \Theta \,\partial _\Phi {\mathcal {G}}_1\, \partial ^2_{\Phi }{\mathcal {G}}_4 - 5940 \, \cot \Theta \, \partial _\Phi {\mathcal {G}}_4\, \partial _\Theta {\mathcal {G}}_1 \nonumber \\&-\, 4950\, \cot \Theta \, \partial _\Phi {\mathcal {G}}_3 \, \partial _\Theta \mathcal{G}_2 - 4400 \, \cot \Theta \, \partial _\Phi {\mathcal {G}}_2 \, \partial _\Theta {\mathcal {G}}_3 \nonumber \\&\left. -\, 4158\, \cot \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_4 + 110{,}880 \mu _1 \, \partial _\Phi {\mathcal {G}}_{11} \right] \lambda ^{{17}/2} + \cdots \end{aligned}$$
(C.3)
$$\begin{aligned} T(\lambda , \Theta , \Phi )= & {} -\frac{\mu _1^{1/3}}{4}\lambda ^{-1} + \frac{7 }{12 \mu _1^{1/6}} {\mathcal {G}}_0\,\lambda ^2 + \frac{64 \sqrt{2} }{135 \mu _1^{1/{12}}} {\mathcal {G}}_1 \lambda ^{5/2} + \frac{4}{5} \mathcal{G}_2\,\lambda ^3 \nonumber \\&+ \frac{160 \sqrt{2} \mu _1^{1/{12}}}{231} \mathcal{G}_3 \, \lambda ^{7/2} + \frac{11 \mu _1^{1/6}}{9} \mathcal{G}_4\,\lambda ^4 \nonumber \\&+ \frac{128\sqrt{2} \mu _1^{1/4}}{117} \mathcal{G}_5 \, \lambda ^{9/2} + \frac{1}{1260 \mu _1^{2/3}} \left[ -259 \,{\mathcal {G}}_0^2 + 2496 \mu _1\, {\mathcal {G}}_6 \right] \lambda ^5 \nonumber \\&+\frac{224 \sqrt{2}}{4455 \mu _1^{7/12}}\left[ -7\, {\mathcal {G}}_0\, \mathcal{G}_1 + 36 \mu _1\, {\mathcal {G}}_7 \right] \lambda ^{{11}/2}\nonumber \\&+\frac{1}{255{,}150 \mu _1^{1/2}}\left[ -78{,}925 \,{\mathcal {G}}_1^2 - 153{,}090\, {\mathcal {G}}_0\, {\mathcal {G}}_2 + 13{,}851 \, (\partial _\Theta {\mathcal {G}}_1)^2 \right. \nonumber \\&\left. +\, 13{,}851 \, \csc ^2 \Theta \, (\partial _\Phi {\mathcal {G}}_1)^2 + 850{,}500 \mu _1\, {\mathcal {G}}_8 \right] \lambda ^6 \nonumber \\&+ \frac{16 \sqrt{2}}{765{,}765 \mu _1^{5/12}} \left[ - 25{,}872\, {\mathcal {G}}_1\, {\mathcal {G}}_2 - 24{,}325 \, {\mathcal {G}}_0 \, {\mathcal {G}}_3 + 4114\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_2 \right. \nonumber \\&\left. +\, 4114\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_2 \right. \nonumber \\&\left. +\, 147{,}840 \mu _1\, {\mathcal {G}}_9 \right] \lambda ^{{13}/2} + \frac{2}{3{,}274{,}425 \mu _1^{1/3}}\left[ -790{,}944\, {\mathcal {G}}_2^2\right. \nonumber \\&\left. - 1{,}537{,}200 \, {\mathcal {G}}_1\, {\mathcal {G}}_3 \right. \nonumber \\&-\, 1{,}397{,}550\, {\mathcal {G}}_0 \,{\mathcal {G}}_4 + 109{,}725 \,(\partial _\Theta {\mathcal {G}}_2)^2 \nonumber \\&+\, 233{,}200\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_3 + 109{,}725 \,\csc ^2 \Theta \, (\partial _\Phi {\mathcal {G}}_2)^2 \nonumber \\&\left. +\, 233{,}200\,\csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1\, \partial _\Phi {\mathcal {G}}_3 + 9{,}424{,}800 \mu _1 \, {\mathcal {G}}_{10}\right] \lambda ^7 \nonumber \\&+ \frac{16 \sqrt{2}}{115{,}540{,}425 \mu _1^{1/4}} \left[ -6{,}191{,}640\, {\mathcal {G}}_2\, {\mathcal {G}}_3 - 5{,}845{,}840 \, {\mathcal {G}}_1 \, {\mathcal {G}}_4 \right. \nonumber \\&- \,5{,}114{,}340 \, \mathcal{G}_0 \, {\mathcal {G}}_5 + 791{,}505\, \partial _\Theta {\mathcal {G}}_2 \, \partial _\Theta {\mathcal {G}}_3 + 880{,}308\, \partial _\Theta {\mathcal {G}}_1 \, \partial _\Theta {\mathcal {G}}_4 \nonumber \\&+\, 791{,}505\, \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_2 \, \partial _\Phi {\mathcal {G}}_3 + 880{,}308\, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_1 \, \partial _\Phi {\mathcal {G}}_4 \nonumber \\&\left. + 38{,}918{,}880 \mu _1 \, {\mathcal {G}}_{11} \right] \lambda ^{{15}/2} \nonumber \\&+ \frac{1}{624{,}323{,}700 \mu _1^{7/6}}\left[ 196{,}931{,}735\, {\mathcal {G}}_0^3 - 484{,}553{,}160 \mu _1\, {\mathcal {G}}_3^2 \right. \nonumber \\&-\,943{,}422{,}480 \mu _1\, {\mathcal {G}}_2 \, {\mathcal {G}}_4 - 863{,}736{,}720 \mu _1\, {\mathcal {G}}_1\, {\mathcal {G}}_5 \nonumber \\&-\, 721{,}440{,}720 \mu _1 \, {\mathcal {G}}_0\, {\mathcal {G}}_6 + 55{,}306{,}680 \mu _1 \, (\partial _\Theta \mathcal{G}_3)^2 \nonumber \\&+\, 115{,}846{,}731 \mu _1\, \partial _\Theta {\mathcal {G}}_2\, \partial _\Theta {\mathcal {G}}_4 + 133{,}429{,}296 \mu _1\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_5 \nonumber \\&+\, 55{,}306{,}680 \mu _1 \, \csc ^2 \Theta \, (\partial _\Phi \mathcal{G}_3)^2 + 115{,}846{,}731 \mu _1\, \partial _\Phi {\mathcal {G}}_2\, \partial _\Phi {\mathcal {G}}_4 \nonumber \\&\left. + \,133{,}429{,}296 \mu _1\, \partial _\Phi \mathcal{G}_1\, \partial _\Phi {\mathcal {G}}_5 + 6{,}326{,}480{,}160 \mu _1^2 \,{\mathcal {G}}_{12} \right] \lambda ^8 \nonumber \\&+ \frac{8 \sqrt{2}}{723{,}647{,}925 \mu _1^{13/12}}\left[ 77{,}322{,}245\, \mathcal{G}_0^2 \,{\mathcal {G}}_1 - 126{,}126{,}000 \mu _1\, {\mathcal {G}}_3\, {\mathcal {G}}_4 \right. \nonumber \\&-\, 119{,}528{,}640 \mu _1\, {\mathcal {G}}_2 \, {\mathcal {G}}_5 - 105{,}705{,}600 \mu _1\, {\mathcal {G}}_1\, {\mathcal {G}}_6 \nonumber \\&-\, 83{,}243{,}160 \mu _1\,\mathcal{G}_0\, {\mathcal {G}}_7 + 13{,}427{,}700 \mu _1\, \partial _\Theta {\mathcal {G}}_3\, \partial _\Theta {\mathcal {G}}_4 \nonumber \\&+\, 14{,}578{,}200 \mu _1 \, \partial _\Theta {\mathcal {G}}_2 \, \partial _\Theta {\mathcal {G}}_5 + 17{,}256{,}096 \mu _1\, \partial _\Theta {\mathcal {G}}_1\, \partial _\Theta {\mathcal {G}}_6\nonumber \\&+\, 13{,}427{,}700 \mu _1\, \csc ^2\Theta \, \partial _\Phi {\mathcal {G}}_3\, \partial _\Phi {\mathcal {G}}_4 \nonumber \\&+\, 14{,}578{,}200 \mu _1 \, \csc ^2 \Theta \, \partial _\Phi {\mathcal {G}}_2 \, \partial _\Phi \mathcal{G}_5\nonumber \\&+ 17{,}256{,}096 \mu _1\, \csc ^2 \Theta \, \partial _\Phi \mathcal{G}_1\, \partial _\Phi {\mathcal {G}}_6 \nonumber \\&\left. + 864{,}864{,}000 \mu _1^2\, \mathcal{G}_{13} \right] \lambda ^{{17}/2} + \cdots \end{aligned}$$
(C.4)

Regularity condition

We begin with (3.35), the condition that the fgh need to satisfy to have the metric to be non-singular on the horizon:

$$\begin{aligned}&f^2 (q_6^2 - z_2 z_3) + g^2 (q_4^2 - z_3 z_1) + h^2 (q_2^2 - z_1 z_2) + 2 f g (q_4 q_6 - q_2 z_3) \nonumber \\&\quad - 2 g h (q_2 q_4 - q_6 z_1) + 2 f h (q_6 q_2 - q_4 z_2) \ne 0. \end{aligned}$$
(D.1)

This is the determinant of the following \(4\times 4\) matrix (the metric for the “AdS” part), evaluated at the horizon i.e. at \(\lambda =0\).

$$\begin{aligned} M = \left( \begin{array}{cccc} 0 &{}\quad -g &{}\quad -h &{}\quad f \\ -g &{}\quad z_2 &{}\quad q_6 &{}\quad q_2 \\ -h &{}\quad q_6 &{}\quad z_3 &{}\quad q_4 \\ f &{}\quad q_2 &{}\quad q_4 &{}\quad z_1 \\ \end{array} \right) \end{aligned}$$
(D.2)

The determinant of M, given by (D.1) can be written as a quadratic form

$$\begin{aligned} \det (M) = -F^{T}S F \end{aligned}$$
(D.3)

with

$$\begin{aligned} F= \left( \begin{array}{ccc} -g&-h&f \end{array} \right) , \qquad S = \left( \begin{array}{ccc} A &{} \quad D &{}\quad G \\ D &{}\quad E &{}\quad H \\ G &{}\quad H &{}\quad I \\ \end{array} \right) . \end{aligned}$$
(D.4)

Here matrix S is the adjugate (or classical adjoint) corresponding to lower \(3\times 3\) block in M. It’s a singular matrix. We can see why this matrix appears as follows. If \(g_{ab}\) is a symmetric matrix then following identity holds

$$\begin{aligned} \det \left( \begin{array}{ccc} x &{} \quad v_b\\ w_a &{}\quad g_{ab} \\ \end{array} \right) = (x -v_b g^{bc}w_{c}) \det [g_{ab}]. \end{aligned}$$
(D.5)

Applying this identity to matrix M, we get that \(\det [M] = -F^{T}S F\). Notice that lower \(3\times 3\) block in M i.e. \(g_{ab}\) is a singular matrix whose inverse \(g^{ab}\) is not defined.

$$\begin{aligned} g= \left( \begin{array}{ccc} z_2 &{}\quad q_6 &{}\quad q_2 \\ q_6 &{}\quad z_3 &{}\quad q_4 \\ q_2 &{}\quad q_4 &{}\quad z_1 \\ \end{array} \right) = \left( \begin{array}{ccc} f_X &{}\quad g_X &{}\quad h_X \\ f_Y &{}\quad g_Y &{}\quad h_Y \\ f_v&{}\quad g_v &{}\quad h_v \\ \end{array} \right) \left( \begin{array}{ccc} -f_X &{}\quad -f_Y &{}\quad -f_v \\ g_X &{}\quad g_Y &{}\quad g_v \\ h_X &{}\quad h_Y &{}\quad h_v \\ \end{array} \right) \end{aligned}$$
(D.6)

Here subscript XYv below fgh denotes partial derivative with respect to that variable. Since there is a functional relation between fg and h, the determinant of these matrices vanish individually. To put it another way, take various partial derivatives of relation \(f^2 -g^2 -h^2 =1\) and demand a non-trivial solution for the resulting linear equations. But \(g^{ab}Det[g_{ab}]\) still gives the adjugate matrix S. We can think of first working with a non-zero \(\lambda \) so that inverse is well defined and then taking the limit \(\lambda \rightarrow 0\).

We will analyze this matrix S in detail. Matrix elements are as follows:

$$\begin{aligned} A= & {} z_1z_3 -q_{4}^{2}, \quad D= q_2q_4 - z_1 q_6, \quad E= z_1z_2 -q_{2}^{2} \nonumber \\ I= & {} z_2z_3 -q_{6}^{2}, \quad H= q_2q_6 - z_2 q_4, \quad G= q_6q_4 - z_3q_2 \ \end{aligned}$$
(D.7)

Elements of S satisfy some identities which can be easily checked:

$$\begin{aligned} AE -D^2 = z_1 \det [g] , \quad IA- G^2 = z_3 \det [g], \quad DG-AH= q_4 \det [g] \nonumber \\ EI-H^2 = z_2 \det [g], \quad DH-GE= q_2 \det [g] , \quad GH-ID= q_6 \det [g] \nonumber \\ Az_2 + Dq_6 + Gq_2 = \det [g], \quad Dz_2 + Eq_6 + Hq_2 =0 , \quad Gz_2 + Hq_6 + Iq_2 =0\nonumber \\ \end{aligned}$$
(D.8)

In our case \(\det [g]=0\) and so some of the above identities simplify. Eigenvalues \(\alpha \) of S are given by the characteristic equation

$$\begin{aligned} \det [S] -c_2 \alpha + Tr(S)\alpha ^2 -\alpha ^3 =0 \end{aligned}$$
(D.9)

where Cayley-Hamilton theorem gives

$$\begin{aligned} c_2 = \frac{1}{2}\left( (Tr(S))^2 - Tr(S^2)\right) = AE + AI + EI -(D^2+G^2+H^2). \end{aligned}$$
(D.10)

Since \(\det [S]=0\) and by the above identities, \(c_2=0\), we have only one non-zero eigenvalue \(\alpha = Tr(S)\). Define 3-vectors

$$\begin{aligned} \vec {K} = \nabla g \times \nabla h,\quad \vec {L} = \nabla f \times \nabla g,\quad \vec {M} = \nabla f \times \nabla h \end{aligned}$$
(D.11)

In terms of these, we can write, after little bit of algebra,

$$\begin{aligned} z_2z_3 -q_6^2= & {} K_v^2 -L_v^2 -M_v^2,\quad z_1z_3 -q_4^2 = K_X^2 -L_X^2 -M_X^2,\nonumber \\ z_2z_1 -q_2^2= & {} K_Y^2 -L_Y^2 -M_Y^2. \end{aligned}$$
(D.12)

So the non-zero eigenvalue

$$\begin{aligned} \alpha = Tr(S) =A+ E+ I = \vec {K}\cdot \vec {K} -\vec {L}\cdot \vec {L}-\vec {M}\cdot \vec {M} \end{aligned}$$
(D.13)

Using the condition (D.1), we can write \(\vec {L} = \frac{-h}{f}\vec {K}\) and \(\vec {M} = \frac{g}{f}\vec {K}\) since \(\nabla f = \frac{g}{f}\nabla g + \frac{h}{f}\nabla h\). Using this, we see that \(\alpha = \frac{\vec {K}\cdot \vec {K}}{f^2}\). So if \(\vec {K}\) is zero then all eigenvalues are zero and hence the quadratic form vanishes. We can determine the eigenvector corresponding to \(\alpha \). This is given as a solution to

$$\begin{aligned} \left( \begin{array}{ccc} A &{}\quad D &{}\quad G \\ D &{}\quad E &{}\quad H \\ G &{}\quad H &{}\quad I \\ \end{array} \right) \left( \begin{array}{ccc} x_1&\quad x_2&\quad x_3 \end{array} \right) = \alpha \left( \begin{array}{ccc} x_1&\quad x_2&\quad x_3 \end{array} \right) \end{aligned}$$
(D.14)

Since AEI have same sign, we can write \(D=\sqrt{AE}\), \(G=\sqrt{AI}\) and \(H=\sqrt{EI}\). Then eigenvector is \((\sqrt{A},\sqrt{E},\sqrt{I}\). If we use the matrix of eigenvectors to diagonalize S then quadratic form can be written as

$$\begin{aligned} \det [M]= & {} (f\sqrt{A} -g\sqrt{E} - h\sqrt{I})^2 = (f\sqrt{(-q_6^2 + z_2 z_3)} \nonumber \\&- g\sqrt{(-q_4^2 + z_1 z_3)} -h\sqrt{(-q_2^2 + z_2 z_1)})^2. \end{aligned}$$
(D.15)

Now we know that a quadratic form which doesn’t change sign (since \(\det [M]\) is always positive, this condition is satisfied for our case) can only be zero on the null space of the matrix S. So we can have determinant M zero only if F belongs to null space of S. We check that unless fgh are zero, this is not the case. An example of eigenvector with zero eigenvalue, using identities (D.8) is \((z_2,q_6,q_2)\).

So the only way for determinant of M to vanish is if \(\vec {K} = \nabla g \times \nabla h =0 \). We can see that if fgh are constants or if all are functions of only one variable then \(\det [M]\) would vanish and metric would be singular. Some possible choices of fgh are given in (3.37).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowdigere, C.N., Kumar, A., Raj, H. et al. On the smoothness of multi center coplanar black hole and membrane horizons. Gen Relativ Gravit 51, 146 (2019). https://doi.org/10.1007/s10714-019-2634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2634-y

Keywords

Navigation