Skip to main content
Log in

Symmetries of free massless particles and soft theorems

  • Editor’s Choice (Research Article)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In an earlier paper we have constructed a basis of massless single particle quantum states which transform in the unitary principal series representation of the four dimensional Lorentz group. The S-matrix written in this basis gives rise to the Mellin transformed amplitude of Pasterski–Shao–Strominger and its generalization. In this basis the particle can be thought of as living on the null-infinity in the Minkowski space. In this paper we take some preliminary steps to see how the connection between soft theorems and symmetries work out in this picture. For simplicity we consider only the leading soft photon and soft graviton theorems which are related to U(1) Kac–Moody and supertranslations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The construction of free quantum fields on the abstract \((u,z,\bar{z})\) space is naturally done from a group theoretic point of view [23] by following Wigner. This construction does not require the knowledge of the (Minkowski) space–time quantum fields. For massless particles one can construct the delta function normalisable states,

    figure a

    where \(|\omega ,z,\bar{z},\sigma>\) are the standard Wigner states. Now one can define the Heisenberg picture states,

    figure b

    where \(u = U(1+z\bar{z})\) and \(H=P^0\) is the Hamiltonian. These states are analogous to the states \(|{\vec {x}}, t> = e^{iHt}|{\vec {x}}>\) in the non-relativistic quantum mechanics. Now, one can show [23] that the states \(|\lambda ,\sigma ,u,z,\bar{z}>\) transform covariantly under the full Poincare group. The transformation laws are given in Eqs.—(3.9), (3.10), (3.12) and (3.13). The transformation laws suggest that we can think of the particle described by the state \(|\lambda ,\sigma ,u,z,\bar{z}>\) as located at the point \((u,z,\bar{z})\). The definitions (3.4) and (3.5) are essentially the rewriting of the Eq. (3.5) using creation–annihilation operators.

References

  1. Strominger, A.: Asymptotic symmetries of Yang–Mills theory. JHEP 1407, 151 (2014). https://doi.org/10.1007/JHEP07(2014)151. [arXiv:1308.0589 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Strominger, A.: On BMS invariance of gravitational scattering. JHEP 1407, 152 (2014). https://doi.org/10.1007/JHEP07(2014)152. [arXiv:1312.2229 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  3. He, T., Mitra, P., Porfyriadis, A.P., Strominger, A.: New symmetries of massless QED. JHEP 1410, 112 (2014). https://doi.org/10.1007/JHEP10(2014)112. [arXiv:1407.3789 [hep-th]]

    Article  ADS  Google Scholar 

  4. Strominger, A., Zhiboedov, A.: Gravitational memory, BMS supertranslations and soft theorems. JHEP 1601, 086 (2016). https://doi.org/10.1007/JHEP01(2016)086. [arXiv:1411.5745 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. He, T., Lysov, V., Mitra, P., Strominger, A.: BMS supertranslations and Weinberg’s soft graviton theorem. JHEP 1505, 151 (2015). https://doi.org/10.1007/JHEP05(2015)151. [arXiv:1401.7026 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Weinberg, S.: Infrared photons and gravitons. Phys. Rev. 140, B516 (1965). https://doi.org/10.1103/PhysRev.140.B516

    Article  ADS  MathSciNet  Google Scholar 

  7. Kapec, D., Pate, M., Strominger, A.: New symmetries of QED. arXiv:1506.02906 [hep-th]

  8. Campiglia, M., Laddha, A.: Asymptotic symmetries of QED and Weinberg’s soft photon theorem. JHEP 1507, 115 (2015). https://doi.org/10.1007/JHEP07(2015)115. [arXiv:1505.05346 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Campiglia, M., Laddha, A.: Asymptotic symmetries of gravity and soft theorems for massive particles. JHEP 1512, 094 (2015). https://doi.org/10.1007/JHEP12(2015)094. [arXiv:1509.01406 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Pasterski, S., Shao, S.H., Strominger, A.: Flat space amplitudes and conformal symmetry of the celestial sphere. Phys. Rev. D 96(6), 065026 (2017). https://doi.org/10.1103/PhysRevD.96.065026. [arXiv:1701.00049 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  11. Pasterski, S., Shao, S.H.: Conformal basis for flat space amplitudes. Phys. Rev. D 96(6), 065022 (2017). https://doi.org/10.1103/PhysRevD.96.065022. [arXiv:1705.01027 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  12. Pasterski, S., Shao, S.H., Strominger, A.: Gluon amplitudes as 2d conformal correlators. Phys. Rev. D 96(8), 085006 (2017). https://doi.org/10.1103/PhysRevD.96.085006. [arXiv:1706.03917 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  13. Cheung, C., de la Fuente, A., Sundrum, R.: 4D scattering amplitudes and asymptotic symmetries from 2D CFT. JHEP 1701, 112 (2017). https://doi.org/10.1007/JHEP01(2017)112. [arXiv:1609.00732 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. de Boer, J., Solodukhin, S.N.: A holographic reduction of Minkowski space–time. Nucl. Phys. B 665, 545 (2003). https://doi.org/10.1016/S0550-3213(03)00494-2. [hep-th/0303006]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann. Math. 48(3), 568–640 (1947)

    Article  MathSciNet  Google Scholar 

  16. Gadde, A.: In search of conformal theories. arXiv:1702.07362 [hep-th]

  17. Hogervorst, M., van Rees, B.C.: Crossing symmetry in alpha space. JHEP 1711, 193 (2017). https://doi.org/10.1007/JHEP11(2017)193. [arXiv:1702.08471 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Simmons-Duffin, D., Stanford, D., Witten, E.: A spacetime derivation of the Lorentzian OPE inversion formula. arXiv:1711.03816 [hep-th]

  19. Cardona, C., Huang, Y.T.: S-matrix singularities and CFT correlation functions. JHEP 1708, 133 (2017). https://doi.org/10.1007/JHEP08(2017)133. [arXiv:1702.03283 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lam, H.T., Shao, S.H.: Conformal basis, optical theorem, and the bulk point singularity. arXiv:1711.06138 [hep-th]

  21. Banerjee, N., Banerjee, S., Atul Bhatkar, S., Jain, S.: Conformal structure of massless scalar amplitudes beyond tree level. arXiv:1711.06690 [hep-th]

  22. Schreiber, A., Volovich, A., Zlotnikov, M.: Tree-level gluon amplitudes on the celestial sphere. arXiv:1711.08435 [hep-th]

  23. Banerjee, S.: Null infinity and unitary representation of the Poincare group. JHEP 1901, 205 (2019). https://doi.org/10.1007/JHEP01(2019)205. [arXiv:1801.10171 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Kapec, D., Mitra, P.: A \(d\)-dimensional stress tensor for Mink\(_{d+2}\) gravity. arXiv:1711.04371 [hep-th]

  25. Weinberg, S.: The quantum theory of fields. In: Foundations, vol. 1 (1995)

  26. Sachs, R.: Asymptotic symmetries in gravitational theory. Phys. Rev. 128, 2851 (1962). https://doi.org/10.1103/PhysRev.128.2851

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Barnich, G., Troessaert, C.: Symmetries of asymptotically flat 4 dimensional spacetimes at null infinity revisited. Phys. Rev. Lett. 105, 111103 (2010). https://doi.org/10.1103/PhysRevLett.105.111103. [arXiv:0909.2617 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  28. Barnich, G., Troessaert, C.: Supertranslations call for superrotations. PoS CNCFG 2010, 010 (2010). [Ann. U. Craiova Phys. 21, S11 (2011)] [arXiv:1102.4632 [gr-qc]]

    Google Scholar 

  29. Barnich, G., Troessaert, C.: BMS charge algebra. JHEP 1112, 105 (2011). https://doi.org/10.1007/JHEP12(2011)105. [arXiv:1106.0213 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Barnich, G., Troessaert, C.: Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity. JHEP 1311, 003 (2013). https://doi.org/10.1007/JHEP11(2013)003. [arXiv:1309.0794 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Strominger, A.: Lectures on the infrared structure of gravity and gauge theory, and references therein. arXiv:1703.05448 [hep-th]

  32. Pate, M., Raclariu, A.M., Strominger, A.: Conformally soft theorem in gauge theory. arXiv:1904.10831 [hep-th]

  33. Fan, W., Fotopoulos, A., Taylor, T.R.: Soft limits of Yang–Mills amplitudes and conformal correlators. JHEP 1905, 121 (2019). https://doi.org/10.1007/JHEP05(2019)121. [arXiv:1903.01676 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Banerjee, S., Ghosh, S., Pandey, P., Saha, A.P.: Modified celestial amplitude in Einstein gravity (2019)

  35. Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems. Proc. R. Soc. Lond. A 269, 21 (1962). https://doi.org/10.1098/rspa.1962.0161

    Article  ADS  MATH  Google Scholar 

  36. Sachs, R.K.: Gravitational waves in general relativity. 8. Waves in asymptotically flat space–times. Proc. R. Soc. Lond. A 270, 103 (1962). https://doi.org/10.1098/rspa.1962.0206

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Cachazo, F., Strominger, A.: Evidence for a new soft graviton theorem. arXiv:1404.4091 [hep-th]

  38. Schwab, B.U.W., Volovich, A.: Subleading soft theorem in arbitrary dimensions from scattering equations. Phys. Rev. Lett. 113(10), 101601 (2014). https://doi.org/10.1103/PhysRevLett.113.101601. [arXiv:1404.7749 [hep-th]]

    Article  ADS  Google Scholar 

  39. Bern, Z., Davies, S., Nohle, J.: On loop corrections to subleading soft behavior of gluons and gravitons. Phys. Rev. D 90(8), 085015 (2014). https://doi.org/10.1103/PhysRevD.90.085015. [arXiv:1405.1015 [hep-th]]

    Article  ADS  Google Scholar 

  40. Broedel, J., de Leeuw, M., Plefka, J., Rosso, M.: Constraining subleading soft gluon and graviton theorems. Phys. Rev. D 90(6), 065024 (2014). https://doi.org/10.1103/PhysRevD.90.065024. [arXiv:1406.6574 [hep-th]]

    Article  ADS  Google Scholar 

  41. Sen, A.: Soft theorems in superstring theory. JHEP 1706, 113 (2017). https://doi.org/10.1007/JHEP06(2017)113. [arXiv:1702.03934 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Sen, A.: Subleading soft graviton theorem for loop amplitudes. JHEP 1711, 123 (2017). https://doi.org/10.1007/JHEP11(2017)123. [arXiv:1703.00024 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Laddha, A., Sen, A.: Sub-subleading soft graviton theorem in generic theories of quantum gravity. JHEP 1710, 065 (2017). https://doi.org/10.1007/JHEP10(2017)065. [arXiv:1706.00759 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Chakrabarti, S., Kashyap, S.P., Sahoo, B., Sen, A., Verma, M.: Subleading soft theorem for multiple soft gravitons. arXiv:1707.06803 [hep-th]

  45. Chakrabarti, S., Kashyap, S.P., Sahoo, B., Sen, A., Verma, M.: Testing subleading multiple soft graviton theorem for CHY prescription. arXiv:1709.07883 [hep-th]

  46. Laddha, A., Mitra, P.: Asymptotic symmetries and subleading soft photon theorem in effective field theories. arXiv:1709.03850 [hep-th]

  47. Laddha, A., Sen, A.: Gravity waves from soft theorem in general dimensions. arXiv:1801.07719 [hep-th]

  48. Campoleoni, A., Francia, D., Heissenberg, C.: On higher-spin supertranslations and superrotations. JHEP 1705, 120 (2017). https://doi.org/10.1007/JHEP05(2017)120. [arXiv:1703.01351 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Banks, T.: A Critique of pure string theory: heterodox opinions of diverse dimensions (2003). arXiv:hep-th/0306074

  50. Kapec, D., Mitra, P., Raclariu, A.M., Strominger, A.: 2D stress tensor for 4D gravity. Phys. Rev. Lett. 119(12), 121601 (2017). https://doi.org/10.1103/PhysRevLett.119.121601. [arXiv:1609.00282 [hep-th]]

    Article  ADS  Google Scholar 

  51. Kapec, D., Lysov, V., Pasterski, S., Strominger, A.: Semiclassical Virasoro symmetry of the quantum gravity \( {\cal{S}}\)-matrix. JHEP 1408, 058 (2014). https://doi.org/10.1007/JHEP08(2014)058. [arXiv:1406.3312 [hep-th]]

    Article  ADS  Google Scholar 

  52. Pasterski, S., Strominger, A., Zhiboedov, A.: New gravitational memories. JHEP 1612, 053 (2016). https://doi.org/10.1007/JHEP12(2016)053. [arXiv:1502.06120 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Campiglia, M., Laddha, A.: Asymptotic symmetries and subleading soft graviton theorem. Phys. Rev. D 90(12), 124028 (2014). https://doi.org/10.1103/PhysRevD.90.124028. [arXiv:1408.2228 [hep-th]]

    Article  ADS  Google Scholar 

  54. Avery, S.G., Schwab, B.U.W.: Burg–Metzner–Sachs symmetry, string theory, and soft theorems. Phys. Rev. D 93, 026003 (2016). https://doi.org/10.1103/PhysRevD.93.026003. [arXiv:1506.05789 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  55. Barnich, G., Oblak, B.: Notes on the BMS group in three dimensions: I. Induced representations. JHEP 1406, 129 (2014). https://doi.org/10.1007/JHEP06(2014)129. [arXiv:1403.5803 [hep-th]]

    Article  ADS  Google Scholar 

  56. Barnich, G., Oblak, B.: Notes on the BMS group in three dimensions: II. Coadjoint representation. JHEP 1503, 033 (2015). https://doi.org/10.1007/JHEP03(2015)033. [arXiv:1502.00010 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Campoleoni, A., Gonzalez, H.A., Oblak, B., Riegler, M.: BMS modules in three dimensions. Int. J. Mod. Phys. A 31(12), 1650068 (2016). [arXiv:1603.03812 [hep-th]]

    Article  ADS  Google Scholar 

  58. Bagchi, A., Gary, M., Zodinmawia, : Bondi–Metzner–Sachs bootstrap. Phys. Rev. D 96(2), 025007 (2017). https://doi.org/10.1103/PhysRevD.96.025007. [arXiv:1612.01730 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  59. Bagchi, A., Gary, M., Zodinmawia, : The nuts and bolts of the BMS bootstrap. Class. Quant. Grav. 34(17), 174002 (2017). https://doi.org/10.1088/1361-6382/aa8003. [arXiv:1705.05890 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Bagchi, A., Basu, R., Kakkar, A., Mehra, A.: Flat holography: aspects of the dual field theory. JHEP 1612, 147 (2016). https://doi.org/10.1007/JHEP12(2016)147. [arXiv:1609.06203 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank especially Ashoke Sen for numerous enlightening discussions on soft theorems and related subjects. I would also like to thank Alok Laddha and Prahar Mitra for very helpful discussion on soft theorems and related matters. Part of this work was presented in the “First Spring Meeting on Strings” held in NISER Bhubaneswar, India. I would like to thank the organizers for holding this exciting meeting. I would also like to thank all the participants of the meeting especially Jyotirmoy Bhattacharya, Sayantani Bhattacharya, Bobby Ezhuthachan, Arnab Kundu, Jnan Maharana, Sudhakar Panda, Ashoke Sen and Yogesh Srivastava for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamik Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S. Symmetries of free massless particles and soft theorems. Gen Relativ Gravit 51, 128 (2019). https://doi.org/10.1007/s10714-019-2609-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2609-z

Keywords

Navigation