Skip to main content
Log in

On the Goldberg–Sachs theorem in six dimensions

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the “shear-free” part of the Goldberg–Sachs theorem for type II and D six-dimensional Einstein spacetimes. A spacetime is of the type II or D if it admits a double Weyl aligned null direction (WAND). The Goldberg–Sachs theorem then restricts geometric properties of double WANDs. This restriction can be expressed in terms of constraints on the form of the “optical matrix” defining the expansion, rotation, and shear of the double WAND. We show that a rank-four and rank-three optical matrix is orthogonally similar to one of three canonical forms, reducing the number of free parameters of the optical matrix from ten to five.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Making further assumptions about the r-dependence of various quantities—see footnote 7 therein.

  2. Genuine Weyl types II and D do not include the more special Weyl types III, N, and O.

  3. In fact, the polynomial order is even constant across each row of \(\varvec{M}\).

  4. The two identities are contained in the Fadeev–LeVerrier algorithm: the first one is an intermediate result of the algorithm, whereas the second one is an application of the theorem itself.

  5. Here we use the fact that \(\varvec{Q}\) is of rank 3: \(\delta _{2} = \delta _{3} = 0\) implies that at least one of \(\delta _{4}\), \(\delta _{5}\) is non-vanishing, and thus either columns 2, 3, 4 or columns 2, 3, 5 are linearly independent, leaving collinearity of columns 4, 5 the only possibility.

References

  1. Goldberg, J.N., Sachs, R.K.: A theorem on Petrov types. Acta Phys. Polon. Suppl. 22, 13–23 (1962)

  2. Newman, E.T., Penrose, R.: An approach to gravitational radiationby a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962). (See also E. Newman and R. Penrose (1963), Errata, J. Math. Phys. 4:998)

    Article  ADS  Google Scholar 

  3. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  4. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  5. Coley, A., Milson, R., Pravda, V., Pravdová, A.: Classification of the Weyl tensor in higher dimensions. Class. Quantum Grav. 21, L35–L41 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ortaggio, M., Pravda, V., Pravdová, A.: Algebraic classification of higher dimensional spacetimes based on null alignment. Class. Quantum Grav. 30, 013001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Pravda, V., Pravdová, A., Coley, A., Milson, R.: Bianchi identities in higher dimensions. Class. Quantum Grav. 21, 2873–2897 (2004). (See also V. Pravda, A. Pravdová, A. Coley and R. Milson Class. Quantum Grav. 24 (2007) 1691 (corrigendum))

    Article  ADS  MathSciNet  Google Scholar 

  8. Ortaggio, M., Pravda, V., Pravdová, A.: Ricci identities in higher dimensions. Class. Quantum Grav. 24, 1657–1664 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Durkee, M., Pravda, V., Pravdová, A., Reall, H.S.: Generalization of the Geroch–Held–Penrose formalism to higher dimensions. Class. Quantum Grav. 27, 215010 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Durkee, M., Reall, H.S.: A higher-dimensional generalization of the geodesic part of the Goldberg–Sachs theorem. Class. Quantum Grav. 26, 245005 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ortaggio, M., Pravda, V., Pravdová, A., Reall, H.S.: On a five-dimensional version of the Goldberg–Sachs theorem. Class. Quantum Grav. 29, 205002 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ortaggio, M., Pravda, V., Pravdová, A.: On the Goldberg–Sachs theorem in higher dimensions in the non-twisting case. Class. Quantum Grav. 30, 075016 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. de Freitas, G.B., Godazgar, M., Reall, H.S.: Uniqueness of the Kerr-de Sitter spacetime as an algebraically special solution in five dimensions. Commun. Math. Phys. 340, 291–323 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. de Freitas, G.B., Godazgar, M., Reall, H.S.: Twisting algebraically special solutions in five dimensions. Class. Quantum Grav. 33, 095002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. Wylleman, L.: Finalizing the classification of type II or more special Einstein spacetimes in five dimensions (2015). arXiv:1511.02824

  16. Ortaggio, M., Pravda, V., Pravdová, A.: Higher dimensional Kerr–Schild spacetimes. Class. Quantum Grav. 26, 025008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ortaggio, M., Pravda, V., Pravdová, A.: Asymptotically flat, algebraically special spacetimes in higher dimensions. Phys. Rev. D 80, 084041 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Málek, T., Pravda, V.: Kerr–Schild spacetimes with (A)dS background. Class. Quantum Grav. 28, 125011 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  19. Ortaggio, M., Pravda, V., Pravdová, A.: On higher dimensional Einstein spacetimes with a non-degenerate double Weyl aligned null direction. Class. Quantum Grav. 35, 075004 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Penrose, R., Rindler, W.: Spinors and Space-Time, Spinor and Twistor Methods in Space-Time Geometry, vol. 2. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  21. Householder, A.S.: The Theory of Matrices in Numerical Analysis. Blaisdell Pub. Co., New York (1964)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by research plan RVO: 67985840. V. P. has been supported by the Czech Science Foundation Grant No GAČR 19-09659S. The work was done under the auspices of the Albert Einstein Center for Gravitation and Astrophysics, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtěch Pravda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Solution to \(\mu = 0\)

A Solution to \(\mu = 0\)

We define \(\mu \) as in (79a)

$$\begin{aligned} \mu = \left( \alpha \beta \gamma + \alpha q^{2} + \beta s^{2} + \gamma u^{2}\right) ^{2} - 4 \alpha \gamma (\beta s + qu)^{2}, \end{aligned}$$
(89)

where

$$\begin{aligned} \alpha&= t - p, \end{aligned}$$
(90a)
$$\begin{aligned} \beta&= v - p,\end{aligned}$$
(90b)
$$\begin{aligned} \gamma&= v - t. \end{aligned}$$
(90c)

Let us discuss solutions of the equation

$$\begin{aligned} \mu = 0. \end{aligned}$$
(91)

Note that

$$\begin{aligned} \alpha&\ge 0, \end{aligned}$$
(92a)
$$\begin{aligned} \gamma&\ge 0,\end{aligned}$$
(92b)
$$\begin{aligned} \beta&= \alpha + \gamma . \end{aligned}$$
(92c)

Proposition 4

For each solution of the equation \(\mu = 0\), at least one of the following conditions is fulfilled

$$\begin{aligned} \alpha = \gamma = 0, \end{aligned}$$
(93a)
$$\begin{aligned} q = s = \gamma = 0, \end{aligned}$$
(93b)
$$\begin{aligned} s = u = \alpha = 0, \end{aligned}$$
(93c)
$$\begin{aligned} q = u = 0,\quad s^{2} = \alpha \gamma , \end{aligned}$$
(93d)
$$\begin{aligned} \alpha q^{2} = \gamma u^{2} = qsu \ne 0. \end{aligned}$$
(93e)

Proof

Let us suppose that none of (93a)–(93d) holds. We will show that then (93e) must hold.

It is straightforward to see that \(\mu = 0\) implies

$$\begin{aligned} q = \gamma = 0 \quad&\Rightarrow \quad s = 0, \end{aligned}$$
(94a)
$$\begin{aligned} u = \alpha = 0 \quad&\Rightarrow \quad s = 0, \end{aligned}$$
(94b)
$$\begin{aligned} q = u = 0 \quad&\Rightarrow \quad s^2 = \alpha \gamma . \end{aligned}$$
(94c)

Therefore, under the given assumptions,

$$\begin{aligned} \alpha q^{2} + \gamma u^{2} > 0. \end{aligned}$$
(95)

Treating \(\mu \) as a quadratic polynomial in \(\alpha \) and \(\gamma \), we see that each time, the discriminant is non-positive, so we complete the square

$$\begin{aligned} (\beta \gamma + q^{2})^{2} \mu&= h_{1}^{2} + 4 \beta \gamma k_{1}^{2}, \end{aligned}$$
(96a)
$$\begin{aligned} (\alpha \beta + u^{2})^{2} \mu&= h_{2}^{2} + 4 \alpha \beta k_{2}^{2}, \end{aligned}$$
(96b)

where

$$\begin{aligned} h_{1}&= \alpha (\beta \gamma + q^{2})^{2} + (\gamma u^{2} - \beta s^{2})(\beta \gamma - q^{2}) - 4 \beta \gamma qsu,&k_{1}&= (\beta s + qu)(\gamma u - qs), \end{aligned}$$
(97a)
$$\begin{aligned} h_{2}&= \gamma (\alpha \beta + u^{2})^{2} + (\alpha q^{2} - \beta s^{2})(\alpha \beta - u^{2}) - 4 \alpha \beta qsu,&k_{2}&= (\beta s + qu)(\alpha q - su). \end{aligned}$$
(97b)

As both \(\beta \gamma \) and \(\alpha \beta \) are strictly positive, four equalities follow from \(\mu = 0\)

$$\begin{aligned} h_{1} = h_{2} = k_{1} = k_{2} = 0. \end{aligned}$$
(98)

Choosing an appropriate combination of \( h_{1}\) and \( h_{2} \) gives

$$\begin{aligned} 0 = \alpha h_{1} - \gamma h_{2} = (\alpha \beta \gamma + \alpha q^{2} + \beta s^{2} + \gamma u^{2})(\alpha q^{2} - \gamma u^{2}). \end{aligned}$$
(99)

The first factor is strictly positive due to (95) and thus

$$\begin{aligned} \alpha q^{2} = \gamma u^{2}. \end{aligned}$$
(100)

Hence, considering (95) again,

$$\begin{aligned} \alpha \gamma qu \ne 0. \end{aligned}$$
(101)

Considering \(k_{1} = 0\), \(k_{2} = 0\), one of the following two conditions must hold

$$\begin{aligned} \beta s + qu&= 0\quad (\text {hence }qsu < 0), \end{aligned}$$
(102a)
$$\begin{aligned} (\gamma u - qs)^{2} + (\alpha q - su)^{2}&= 0\quad (\text {hence }qsu > 0). \end{aligned}$$
(102b)

However, it can be seen from (89) and (95) that it is impossible to achieve (102a). \(\square \)

Corollary 1

The equation

$$\begin{aligned} \mu = 0,\quad \alpha ^{2} + \gamma ^{2} \ne 0 \end{aligned}$$
(103)

has the following set of roots, parametrized by real x, y, z,

$$\begin{aligned} \alpha&= y^{2},\end{aligned}$$
(104a)
$$\begin{aligned} \gamma&= x^{2},\end{aligned}$$
(104b)
$$\begin{aligned} q&= xz,\end{aligned}$$
(104c)
$$\begin{aligned} s&= xy,\end{aligned}$$
(104d)
$$\begin{aligned} u&= yz. \end{aligned}$$
(104e)

Proof

To see that (104) solves \(\mu = 0\), one can substitute into (89)

$$\begin{aligned} \left( \alpha \beta \gamma + \alpha q^{2} + \beta s^{2} + \gamma u^{2}\right) ^{2} = 4 \alpha \gamma (\beta s + qu)^{2} = 4 x^{4} y^{4} \left( x^{2} + y^{2} + z^{2}\right) ^{2}. \nonumber \\ \end{aligned}$$
(105)

It is obvious that cases (93b)–(93d) can be parametrized according to (104). In order to complete the proof, it suffices to show that this parametrization can be also applied to the case (93e).

Let us assume (93e)

$$\begin{aligned} \alpha q^{2} = \gamma u^{2} = qsu \ne 0. \end{aligned}$$
(106)

Hence

$$\begin{aligned} \begin{pmatrix} -s &{}\quad \gamma \\ \alpha &{}\quad -s \end{pmatrix} \begin{pmatrix} q\\ u \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}. \end{aligned}$$
(107)

The determinant necessarily vanishes

$$\begin{aligned} s^{2} - \alpha \gamma = 0. \end{aligned}$$
(108)

Thus one can introduce x and y such that

$$\begin{aligned} \alpha&= y^{2},\end{aligned}$$
(109a)
$$\begin{aligned} \gamma&= x^{2},\end{aligned}$$
(109b)
$$\begin{aligned} s&= xy. \end{aligned}$$
(109c)

By substituting this parametrization into (107), we get

$$\begin{aligned} \begin{pmatrix} x\\ -y \end{pmatrix} \begin{pmatrix} -y&x \end{pmatrix} \begin{pmatrix} q\\ u \end{pmatrix} = \begin{pmatrix} 0\\ 0 \end{pmatrix}, \end{aligned}$$
(110)

which implies

$$\begin{aligned} qy = ux. \end{aligned}$$
(111)

Finally, one can introduce z such that

$$\begin{aligned} q&= xz,\end{aligned}$$
(112a)
$$\begin{aligned} u&= yz. \end{aligned}$$
(112b)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tintěra, T., Pravda, V. On the Goldberg–Sachs theorem in six dimensions. Gen Relativ Gravit 51, 111 (2019). https://doi.org/10.1007/s10714-019-2592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2592-4

Keywords

Navigation