Skip to main content
Log in

Information preservation for null shell collapse: a moving mirror model

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We propose a new null shell collapse scenario based on an asymptotically drifting moving mirror. The resulting black hole is described in a generalization of the usual tortoise coordinate system, which we refer to as the “giant tortoise coordinate”. The Hawking evaporation yields a total finite energy which preserves unitarity, but spacetime ceases to be continuous across the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In [1], the mirror is called Omex for short, due to the Omega constant, \(\Omega e^{\Omega } = 1\), and exponent argument.

  2. An inversion of the tortoise coordinate itself, Eq. (1), is analytically tractable and the result is in terms of the Lambert W-function [19].

  3. It might be interesting to check the behavior of the apparent horizon, if any, during the collapse. The question of whether a horizon (of any sort) is formed during gravitational collapse when quantum effects are taken into account has recently received renewed attention, see, e.g., [20, 21].

  4. For relevant asymptotically static investigations see [23, 24] and references within.

References

  1. Good, M.R.R., Anderson, P.R., Evans, C.R.: Mirror reflections of a black hole. Phys. Rev. D 94, 065010 (2016). arXiv:1605.06635 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  2. Good, M.R.R., Yelshibekov, K., Ong, Y.C.: On horizonless temperature with an accelerating mirror. JHEP 1703, 013 (2017). arXiv:1611.00809 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  3. Wilczek, F.: In: *Houston 1992, Proceedings, Black holes, membranes, wormholes and superstrings* 1–21, and Inst. Adv. Stud. Princeton—IASSNS-HEP-93-012 (93/02,rec.Mar.) 19 pp. 306–377. arXiv:hep-th/9302096

  4. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  5. Fulling, S.A., Davies, P.C.W.: Radiation from a moving mirror in two-dimensional space–time conformal anomaly. Proc. R. Soc. Lond. A 348, 393 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  6. Davies, P.C.W., Fulling, S.A.: Radiation from moving mirrors and from black holes. Proc. R. Soc. Lond. A 356, 237 (1977)

    Article  ADS  Google Scholar 

  7. Good, M.R.R.: “Reflections on a Black Mirror,” Memorial Volume for Kerson Huang. arXiv:1602.00683 [gr-qc]

  8. Anderson, P.R., Good, M.R.R., Evans, C.R.: Black hole—moving mirror I: an exact correspondence. In: Fourteenth Marcel Grossmann Meeting. arXiv:1507.03489 [gr-qc]

  9. Good, M.R.R., Anderson, P.R., Evans, C.R.: Black hole—moving mirror II: particle creation. In: Fourteenth Marcel Grossmann Meeting. arXiv:1507.05048 [gr-qc]

  10. Hotta, M., Shino, M., Yoshimura, M.: Moving mirror model of hawking evaporation. Prog. Theor. Phys. 91, 839 (1994). arXiv:hep-th/9403139

    Article  MathSciNet  ADS  Google Scholar 

  11. Good, M.R.R., Anderson, P.R., Evans, C.R.: Time dependence of particle creation from accelerating mirrors. Phys. Rev. D 88, 025023 (2013). arXiv:1303.6756 [gr-qc]

    Article  ADS  Google Scholar 

  12. Good, M.R.R.: On spin-statistics and Bogoliubov transformations in flat spacetime with acceleration conditions. Int. J. Mod. Phys. A 28, 1350008 (2013). arXiv:1205.0881 [gr-qc]

    Article  ADS  Google Scholar 

  13. Hossenfelder, S., Smolin, L.: Conservative solutions to the black hole information problem. Phys. Rev. D 81, 064009 (2010). arXiv:0901.3156 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  14. Chen, P., Ong, Y.C., Yeom, D.-H.: Black hole remnants and the information loss paradox. Phys. Rep. 603, 1 (2015). arXiv:1412.8366 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  15. Bekenstein, J.D., Mayo, A.E.: Black holes are one-dimensional. Gen. Relativ. Gravit. 33, 2095 (2001). arXiv:gr-qc/0105055

    Article  MathSciNet  ADS  Google Scholar 

  16. Fabbri, A., Navarro-Salas, J.: Modeling Black Hole Evaporation. London Imp. Coll. Pr, London (2005)

    Book  Google Scholar 

  17. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  18. Massar, S., Parentani, R.: From vacuum fluctuations to radiation. II. Black holes. Phys. Rev. D 54, 7444 (1996). arXiv:gr-qc/9502024

    Article  ADS  Google Scholar 

  19. Boonserm, P., Visser, M.: Bounding the greybody factors for Schwarzschild black holes. Phys. Rev. D 78, 101502 (2008). arXiv:0806.2209 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  20. Chen, P., Unruh, W.G., Wu, C.-H., Yeom, D.-H.: Pre-hawking radiation cannot prevent the formation of apparent horizon. Phys. Rev. D 97, 064045 (2018). arXiv:1710.01533 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  21. Mann, R.B., Nagle, I., Terno, D.R.: Transition to light-like trajectories in thin shell dynamics. Nucl. Phys. B 936, 19 (2018). arXiv:1801.01981 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  22. Park, I.Y.: Boundary dynamics in gravitational theories. arXiv:1811.03688 [hep-th]

  23. Good, M.R.R., Linder, E.V.: Slicing the vacuum: new accelerating mirror solutions of the dynamical Casimir effect. Phys. Rev. D 96, 125010 (2017). arXiv:1707.03670 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  24. Good, M.R.R., Linder, E.V.: Finite energy but infinite entropy production from moving mirrors. Phys. Rev. D 99, 025009 (2019). arXiv:1807.08632 [gr-qc]

    Article  ADS  Google Scholar 

  25. Good, M.R.R.: Spacetime continuity and quantum information loss. Universe 4(11), 122 (2018)

    Article  ADS  Google Scholar 

  26. Myrzakul, A., Good, M.R.R.: Unitary evaporation via modified Regge-Wheeler coordinate. MG15 Proceedings. arXiv:1807.10627 [gr-qc]

  27. Hotta, M., Schützhold, R., Unruh, W.G.: On the partner particles for moving mirror radiation and black hole evaporation. Phys. Rev. D 91, 124060 (2015). arXiv:1503.06109 [gr-qc]

    Article  ADS  Google Scholar 

  28. Chen, P., Mourou, G.: Accelerating plasma mirrors to investigate black hole information loss paradox. Phys. Rev. Lett. 118, 045001 (2017). arXiv:1512.04064 [gr-qc]

    Article  ADS  Google Scholar 

  29. Good, M.R.R., Ong, Y.C.: Signatures of energy flux in particle production: a black hole birth cry and death gasp. JHEP 1507, 145 (2015). arXiv:1506.08072 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  30. Bianchi, E., Smerlak, M.: Last gasp of a black hole: unitary evaporation implies non-monotonic mass loss. Gen. Relativ. Gravit. 46, 1809 (2014). arXiv:1405.5235 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  31. Good, M.R.R., Linder, E.V.: Eternal and evanescent black holes: it’s all done with mirrors. Phys. Rev. D 97, 065006 (2018). arXiv:1711.09922 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

MG thanks Paul Anderson, Xiong Chi, Eric Linder and Frank Wilczek for stimulating discussions. MG was funded in part from the Julian Schwinger Foundation under Grant 15-07-0000 and the ORAU and Social Policy grants at Nazarbayev University. MG also thanks the Center for Gravitation and Cosmology of Yangzhou University for hospitability during his visit. YCO acknowledges National Natural Science Foundation of China (No. 11705162), Natural Science Foundation of Jiangsu Province (No. BK20170479) for funding support, he also thanks Grant No. 17Z102060070 of China Postdoctoral Science Foundation Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Ong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Good, M.R.R., Ong, Y.C., Myrzakul, A. et al. Information preservation for null shell collapse: a moving mirror model. Gen Relativ Gravit 51, 92 (2019). https://doi.org/10.1007/s10714-019-2575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2575-5

Keywords

Navigation