Skip to main content
Log in

Electromagnetic effect on scalar field collapse in higher curvature gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider a “Scalar-Maxwell–Einstein–Gauss–Bonnet” theory in four dimension, where the scalar field couples non-minimally with the Gauss–Bonnet (GB) term. This coupling with the scalar field ensures the non topological character of the GB term. In such higher curvature scenario, we explore the effect of electromagnetic field on scalar field collapse. Our results reveal that the presence of a time dependent electromagnetic field requires an anisotropy in the background spacetime geometry and such anisotropic spacetime allows a collapsing solution for the scalar field. The singularity formed as a result of the collapse is found to be a curvature singularity which may be point like or line like depending on the strength of the anisotropy. We also show that the singularity is always hidden from exterior by an apparent horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Oppenheimer, J.R., Snyder, H.: Phys. Rev. 56, 455 (1939)

    Article  ADS  Google Scholar 

  2. Datt, B.: Z. Phys. 108, 314 (1938). (Reprinted as a Golden Oldie, Gen. Relativ. Gravit., 31, 1615 (1999))

    Article  ADS  Google Scholar 

  3. Joshi, P.S.: Global Aspects in Gravitation and Cosmology. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  4. Joshi, P.S. arXiv:1305.1005

  5. Christodoulou, D.: Commun. Math. Phys. 109(591), 613 (1987)

    Article  ADS  Google Scholar 

  6. Christodoulou, D.: Ann. Math. 140, 607 (1994)

    Article  MathSciNet  Google Scholar 

  7. Goncalves, S., Moss, I.: Class. Quantum Gravity 14, 2607 (1997)

    Article  ADS  Google Scholar 

  8. Giambo, R.: Class. Quantum Gravity 22, 2295 (2005)

    Article  ADS  Google Scholar 

  9. Goncalves, S.: Phys. Rev. D 62, 124006 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. Goswami, R., Joshi, P.S.: Mod. Phys. Lett. A 22, 65 (2007)

    Article  ADS  Google Scholar 

  11. Ganguly, K., Banerjee, N.: Pramana 80, 439 (2013)

    Article  ADS  Google Scholar 

  12. Cai, R.G., Ji, L.W., Yang, R.Q.: Commun. Theor. Phys. 65(3), 329–334 (2016)

    Article  ADS  Google Scholar 

  13. Cai, R.G., Ji, L.W., Yang, R.Q.: Commun. Theor. Phys. 68(1), 67 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  14. Cai, R.G., Yang, R.Q. arXiv:1602.00112

  15. Cai, R.G., Yang, R.Q. arXiv:1512.07095

  16. Gundlach, C.: Critical phenomena in gravitational collapse: living reviews. Living Rev. Rel. 2, 4 (1999)

    Article  MathSciNet  Google Scholar 

  17. Goswami, R., Joshi, P.S.: Phys. Rev. D. 65, 027502 (2004)

    Article  ADS  Google Scholar 

  18. Chakrabarti, S.: Gen. Relativ. Gravit. 49, 24 (2017)

    Article  ADS  Google Scholar 

  19. Banerjee, N., Chakrabarti, S.: Phys. Rev. D 95, 024015 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  20. Goldwirth, D., Piran, T.: Phys. Rev. D 36, 3575 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  21. Choptuik, M.W.: Phys. Rev. Lett. 70, 9 (1993)

    Article  ADS  Google Scholar 

  22. Brady, P.R.: Class. Quantum Gravity 11, 1255 (1995)

    Article  ADS  Google Scholar 

  23. Gundlach, C.: Phys. Rev. Lett. 75, 3214 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  24. Bekenstein, J.D.: Phys. Rev. D 4, 2185 (1971)

    Article  ADS  Google Scholar 

  25. Oppenheimer, J., Volkoff, G.: Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  26. Rosales, L., Barreto, W., Peralta, C., Rodriguez-Mueller, B.: Phys. Rev. D 82, 084014 (2010)

    Article  ADS  Google Scholar 

  27. Thorne, K.S.: Phys. Rev. 138, B251 (1965)

    Article  ADS  Google Scholar 

  28. Ardavan, H., Partovi, M.H.: Phys. Rev. D 16, 1664 (1977)

    Article  ADS  Google Scholar 

  29. Stein-Schabes, J.A.: Phys. Rev. D 31, 1838 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  30. Germani, C., Tsagas, C.G.: Phys. Rev. D 73, 064010 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  31. Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  32. Di Prisco, A., Herrera, L., Denmat, G.L., MacCallum, M.A.H., Santos, N.O.: Phys. Rev. D 76, 064017 (2007)

    Article  ADS  Google Scholar 

  33. Sharif, M., Bhatti, M.Z.: Gen. Relativ. Gravit. 44, 281 (2012a)

    Google Scholar 

  34. Sharif, M., Bhatti, M.Z.: Mod. Phys. Lett. A 27, 1250141 (2012b)

    Article  ADS  Google Scholar 

  35. Sharif, M., Yousaf, Z.: Can. J. Phys. 90, 865 (2012)

    Article  ADS  Google Scholar 

  36. Banerjee, N., Paul, T.: Eur. Phys. J. C 77(10), 672 (2017)

    Article  Google Scholar 

  37. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59–144 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  38. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Phys. Rep. 692, 1–104 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  39. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451–497 (2010)

    Article  ADS  Google Scholar 

  40. De Felice, A., Tsujikawa, S.: Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  41. Paliathanasis, A.: Class. Quantum Gravity 33(7), 075012 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  42. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 631, 1–6 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  43. Nojiri, S., Odintsov, S.D., Gorbunova, O.G.: J. Phys. A 39, 6627 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  44. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Zerbini, S.: Phys. Rev. D 73, 084007 (2006)

    Article  ADS  Google Scholar 

  45. Maeda, H.: Phys. Rev. D 73, 104004 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  46. Deppe, N., Leonard, C.D., Taves, T., Kunstatter, G., Mann, R.B.: Phys. Rev. D 86, 104011 (2012)

    Article  ADS  Google Scholar 

  47. Lanczos, C.: Z. Phys. 73, 147 (1932)

    Article  ADS  Google Scholar 

  48. Lanczos, C.: Ann. Math. 39, 842 (1938)

    Article  MathSciNet  Google Scholar 

  49. Lovelock, D.: J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  50. Banerjee, N., Paul, T.: Eur. Phys. J. C 78(2), 130 (2018)

    Article  ADS  Google Scholar 

  51. Goswami, R., Nzioki, A.M., Maharaj, S.D., Ghosh, S.G.: Phys. Rev. D 90, 084011 (2014)

    Article  ADS  Google Scholar 

  52. Chakrabarti, S., Banerjee, N.: Eur. Phys. J. C 77, 166 (2017)

    Article  ADS  Google Scholar 

  53. Chakrabarti, S., Banerjee, N.: Gen. Relativ. Gravit. 48, 57 (2016)

    Article  ADS  Google Scholar 

  54. Nojiri, S., Odintsov, S.D., Sasaki, M.: Phys. Rev. D 71, 123509 (2005)

    Article  ADS  Google Scholar 

  55. Chakraborty, S., SenGupta, S.: Phys. Rev. D 89(2), 026003 (2014)

    Article  ADS  Google Scholar 

  56. Joshi, P.S., Goswami, R., Dadhich, N.: Phys. Rev. D 70, 087502 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  57. Nolan, B.C., Nolan, L.V.: Class. Quantum Gravity 21(15), 3693 (2004)

    Article  ADS  Google Scholar 

  58. Kompaneets, A.S.: Zh. Eksp. Teor. Fiz. 34, 953 (1958). (Sov.Phys. JETP 7 659, (1958))

    MathSciNet  Google Scholar 

  59. Jordan, P., Ehlers, J., Kundt, W.: Abh. Akad. Wiss. Mainz. Math. Naturwiss. Kl 2, 21–85 (1960)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix I: Situation of isotropic spacetime

Appendix I: Situation of isotropic spacetime

The non static isotropic metric ansatz is taken as,

$$\begin{aligned} ds^2 = -dt^2 + a^2(t) \bigg [dr^2 + r^2d\theta ^2 + dz^2\bigg ] \end{aligned}$$
(49)

with a(t) is the scale factor of the spacetime characterized by the coordinates t (\(=x^0\)), r (\(=x^1\)), \(\theta \) (\(=x^2\)) and z (\(=x^3\)) where t is the timelike one. Moreover the scalar field and the electromagnetic field are considered to be dependent only on t. Therefore \(F_{\mu \nu }\) has three non zero independent components: \(F_{01}\), \(F_{02}\) and \(F_{03}\). With these non zero components of \(F_{\mu \nu }\), we obtain various components of \(T_{\mu \nu }(A)\) from Eq. (3) and are given by,

$$\begin{aligned} T_{00}= & {} \frac{1}{2}\bigg [F_{01}F^{01} + F_{02}F^{02} + F_{03}F^{03}\bigg ]\nonumber \\ T_{11}= & {} -\frac{1}{2}a^2\bigg [F_{01}F^{01} - F_{02}F^{02} - F_{03}F^{03}\bigg ]\nonumber \\ T_{22}= & {} -\frac{1}{2}a^2\bigg [-F_{01}F^{01} + F_{02}F^{02} - F_{03}F^{03}\bigg ]\nonumber \\ T_{33}= & {} -\frac{1}{2}a^2\bigg [-F_{01}F^{01} - F_{02}F^{02} + F_{03}F^{03}\bigg ]\nonumber \\ T_{10}= & {} T_{20} = T_{30} = 0\nonumber \\ T_{12}= & {} -a^2 F_{01}F^{02}, T_{13} = -a^2 F_{01}F^{03}, T_{23} = -a^2 F_{02}F^{03} \end{aligned}$$
(50)

Using the above expressions of \(T_{\mu \nu }(A)\), the non diagonal components of gravitational equation are simplified to the following form:

$$\begin{aligned} F_{01}F^{02} = F_{01}F^{03} = F_{02}F^{03} = 0 \end{aligned}$$
(51)

which has the solution as \(F_{01} = F_{02} = F_{03} = 0\). Thus a spatially flat isotropic spacetime cannot support the time dependent electromagnetic field. However a Bianchi-I spacetime, although it is spatially flat, can sustain the gauge field by virtue of its anisotropy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, N., Paul, T. Electromagnetic effect on scalar field collapse in higher curvature gravity. Gen Relativ Gravit 51, 91 (2019). https://doi.org/10.1007/s10714-019-2574-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2574-6

Keywords

Navigation