Skip to main content
Log in

Gravity and spin with a nonsymmetric metric tensor

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It is shown the antisymmetric part of the metric tensor is the potential for the spin field. Various metricity conditions are discussed and comparisons are made to other theories, including Einstein’s. It is shown in the weak field limit the theory reduces to one with a symmetric metric tensor and totally antisymmetric torsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sciama, D.W.: Proc. Camb. Philos. Soc. 54, 72 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  2. Belinfante, F.: Physica 6, 887 (1939)

    Article  MathSciNet  ADS  Google Scholar 

  3. Papapetrou, A.: Philos. Mag. Ser. 7 40(308), 237 (1949)

    Google Scholar 

  4. Hammond, R.T.: Gen. Relativ. Gravit. 26, 247 (1994)

    Article  ADS  Google Scholar 

  5. Kalb, M., Ramond, P.: Phys. Rev. D 9, 2273 (1974)

    Article  ADS  Google Scholar 

  6. Einstein, A.: Ann. Math. 46, 578 (1945)

    Article  MathSciNet  Google Scholar 

  7. Einstein, A., Straus, E.G.: Ann. Math. 47, 731 (1946)

    Article  MathSciNet  Google Scholar 

  8. Einstein, A.: Rev. Mod. Phys. 20, 35 (1948)

    Article  ADS  Google Scholar 

  9. Goenner, H.F.M.: Living Rev. Relativ. 17, 5 (2014). https://doi.org/10.12942/lrr-2014-5

    Article  ADS  Google Scholar 

  10. Schrödinger, E.: Proc. R. Ir. Acad. A 49, 43 (1943)

    Google Scholar 

  11. Schrödinger, E.: Proc. R. Ir. Acad. A 49, 237 (1944)

    Google Scholar 

  12. Schrödinger, E.: Proc. R. Ir. Acad. A 49, 25 (1944)

  13. Schrödinger, E.: Proc. R. Ir. Acad. A 51, 41 (1946)

    Google Scholar 

  14. Hehl, F.W., von der Heyde, P., Kerlick, G.D., Nester, J.M.: Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  Google Scholar 

  15. Hammond, R.T.: Rep. Prog. Phys. 65, 599 (2002)

    Article  ADS  Google Scholar 

  16. Shapiro, I.: Phys. Rep. 357, 113 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  17. Moffat, J.W.: Phys. Rev. D 19, 3554 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  18. Damour, T., Deser, S., McCarthy, J.: Phys. Rev. D 47, 1541 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  19. Hammond, R.T.: Int. J. Mod. Phys. D 22, 1342009 (2013)

    Article  ADS  Google Scholar 

  20. Ivanov, E.I., Smilga, A.V.: SIGMA 9, 069 (2013). arXiv:1302.2902 [hep-th]

    Google Scholar 

  21. Kerstig, N., Ma, Y.-L.: TUHEP-TH-03145

  22. Ghosh, S., Shankaranarayanan, S.: arXiv:1210.4361 [gr-qc]

  23. Gisin, B.V.: arXiv:1608.08864

  24. Ragusa, S.: Braz. J. Phys. 35, 1020 (2005)

    Article  ADS  Google Scholar 

  25. Soleng, H., Eeg, J.O.: Acta Phys. Pol. 23, 87 (1992)

    Google Scholar 

  26. Rankin, J.E.: Class. Quantum Gravity 9(4), 1045 (1992)

    Article  ADS  Google Scholar 

  27. Lecian, O., Montani, G.: J. Korean Phys. Soc. 56, 1653 (2010)

    Article  ADS  Google Scholar 

  28. Casanova, S., et al.: Mod. Phys. Lett. A 23, 17–23 (2008). arXiv:0712.3716 [gr-qc]

    Article  ADS  Google Scholar 

  29. Chamseddine, A., Mukhanov, V.: (2010) arXiv:1002.0541 [hep-th]

  30. Kelly, P.F.: Class. Quantum Gravity 8, 1217 (1991)

    Article  ADS  Google Scholar 

  31. Ragusa, S.: Phys. Rev. D 56, 864 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  32. Ragusa, S.: Gen. Relativ. Gravit. 31, 275 (1999). https://doi.org/10.1023/A:1026680308651

    Article  ADS  Google Scholar 

  33. McInnes, B.T.: J. Phys. A 13, 3657 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  34. Yildiz, A., Hinders, M.K., Rhodes, B.A., et al.: Nuov. Cim. A 102, 1417 (1989)

    Article  ADS  Google Scholar 

  35. Hammond, R.T.: Int. J. Mod. Phys. Lett. D 27, 1847005 (2018)

    Article  ADS  Google Scholar 

  36. Hammond, R.T.: Class. Quantum Gravity 12, 279 (1995)

    Article  ADS  Google Scholar 

  37. Tonnelat, M.A.: Einstein’s Theory of Unified Fields. Gordon & Breach, New York (1965)

    Google Scholar 

  38. Hammond, R.T.: Phys. Rev. D 15(52), 6918 (1995)

    Article  ADS  Google Scholar 

  39. Hammond, R.T.: Gen. Relativ. Gravit. 29, 727 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Hammond.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

For completeness we derive the field equations for the case of zero metricity. In this case (49) and (50) still hold, but \( E^{\lambda \omega }_{\ \ \sigma }\) is different. In fact it is,

$$\begin{aligned} E^{\lambda \omega }_{\ \ \sigma }= & {} g^{\alpha \beta }\Gamma _{\alpha \beta }^{\ \ \ \omega }\delta ^\lambda _\sigma +g^{\lambda \omega }\Gamma _{\gamma \sigma }^{\ \ \ \gamma } -g^{\lambda \beta }\Gamma _{\sigma \beta }^{\ \ \ \omega }-g^{\alpha \omega }\Gamma _{\alpha \sigma }^{\ \ \ \lambda } -\left( \frac{\sqrt{-g},_\sigma }{\sqrt{-g}}g^{\lambda \omega }+g^{\lambda \omega },_\sigma \right) \nonumber \\&+\,\delta ^\lambda _\eta \left( \frac{\sqrt{-g},_\sigma }{\sqrt{-g}}g^{\eta \omega }+g^{\eta \omega },_\eta \right) \end{aligned}$$
(89)

which, with (28) set equal to zero reduces to

$$\begin{aligned} E^{\lambda \omega }_{\ \ \sigma }=2\delta ^\lambda _\sigma g^{\eta \omega }S_\eta +2g^{\theta \omega }S_{\sigma \theta }^{\ \ \lambda } -2g^{\lambda \omega }S_\sigma \end{aligned}$$
(90)

where \(S_\eta =S_{\eta \sigma }^{\ \ \sigma }\) does not vanish in this case. With this we can work out (49). From (48) we may note

$$\begin{aligned} L^{\mu \nu }\delta g_{\mu \nu }=L^{\mu \nu }(\delta \gamma _{\mu \nu }+\delta \phi _{\mu \nu }) \end{aligned}$$
(91)

so we can work out the symmetric part, \(L_{S}^{\mu \nu }\) and then the antisymmetric part \(L_{A}^{\mu \nu }\). Thus, assuming taking the symmetric part (in \(\mu \nu \)) is implied,

$$\begin{aligned} \tilde{L}_{S}^{\mu \nu }= & {} \tilde{E}^{\lambda \omega }_{\ \ \sigma }\left[ -\gamma ^{\mu \sigma }C_{\lambda \omega }^{\ \ \nu } -\gamma ^{\sigma \mu }S_{\lambda \ \ {\underset{-}{\omega }}}^{\ \ {\underset{-}{\nu }}} +\delta ^\nu _\omega S_{\lambda }^{\ {\underset{-}{\sigma }}\mu } +\delta ^\nu _\lambda S_\omega ^{\ {\underset{-}{\sigma }}\mu } - \gamma ^{\mu \sigma }S_{\omega \ {\underset{-}{\lambda }}}^{\ {\underset{-}{\nu }}} \right] \nonumber \\&-\,\frac{\partial _\eta }{2}\left[ \tilde{E}^{\lambda \omega }_{\ \ \sigma }\left( \gamma ^{\sigma \mu }\delta ^{\nu \eta }_{\lambda \omega } +\gamma ^{\sigma \mu }\delta ^{\nu \eta }_{\omega \lambda } -\gamma ^{\sigma \eta }\delta ^{\mu \nu }_{\lambda \omega } \right) \right] \end{aligned}$$
(92)

we adopt the unconventional notation \(\delta ^{\nu \eta }_{\lambda \omega }=\delta ^\nu _\lambda \delta ^\eta _\omega \). Defining

$$\begin{aligned} e^{\nu \eta {\underset{-}{\mu }}}\equiv E^{\nu \eta {\underset{-}{\mu }}} +E^{\eta \nu {\underset{-}{\mu }}} -E^{\mu \nu {\underset{-}{\eta }}} \end{aligned}$$
(93)

Equation (92) may be written as

$$\begin{aligned} L_{S}^{\mu \nu }= - E^{\lambda \omega {\underset{-}{\mu }}} S_{\lambda \omega }^{\ \ \nu } +E^{\lambda \nu }_{\ \ \omega } S_\lambda ^{\ {\underset{-}{\omega }}\mu } -S_\eta e^{\nu \eta {\underset{-}{\mu }}} -\frac{1}{2}\nabla _\eta e^{\eta \nu {\underset{-}{\mu }}} .\end{aligned}$$
(94)

Now we may find the nonsymmetric part \(L_{A}^{\mu \nu }\), where the antisymmetric part is implied. It is,

$$\begin{aligned} L_{A}^{\mu \nu }= & {} E^{\lambda \omega }_{\ \ \sigma }( -\phi ^{\sigma \nu } S_{\lambda \omega }^{\ \ \mu } -\gamma ^{\sigma \theta }\gamma _{\xi \omega }\phi ^{\xi \nu }S_{\lambda \theta }^{\ \ \mu } -\gamma ^{\sigma \theta }\gamma _{\xi \lambda }\phi ^{\xi \nu }S_{\omega \theta }^{\ \ \mu } )\nonumber \\&-\frac{\partial _\eta }{6}[\tilde{E}^{[\lambda \omega ]}_{\ \ \ \ \sigma } ( \phi ^{\sigma \eta }\delta ^{\mu \nu }_{\lambda \omega } +2\phi ^{\sigma \mu }\delta ^{\nu \eta }_{\lambda \omega } ) ] \nonumber \\&+\,2(\gamma ^{\sigma \nu }\gamma _{\xi \phi }\phi ^{\xi \eta }\delta ^\mu _\omega +\gamma ^{\sigma \eta }\gamma _{\xi \omega }\phi ^{\xi \mu }\delta ^\nu _\lambda +\gamma ^{\sigma \mu }\gamma _{\xi \omega }\phi ^{\xi \nu }\delta ^\eta _\lambda ) \end{aligned}$$
(95)

which may be written

$$\begin{aligned} L_{A}^{\mu \nu }= & {} E^{\lambda \omega }_{\ \ \sigma }\phi ^{\sigma \nu }S_{\lambda \omega }^{\ \ \mu } -E^{\lambda \omega {\underset{-}{\theta }}} (\gamma _{\xi \omega }\phi ^{\xi \nu }S_{\lambda \theta }^{\ \ \mu } +\gamma _{\xi \lambda }\phi ^{\xi \nu }S_{\omega \theta }^{\ \ \mu }) \nonumber \\&-\,\frac{1}{6}\left[ (\nabla _\eta +S_\eta )(E^{\mu \nu }_{\ \ \sigma }\phi ^{\sigma \eta } +E^{\nu \eta }_{\ \ \sigma }\phi ^{\sigma \mu } -E^{\eta \nu }_{\ \ \sigma }\phi ^{\sigma \mu }) +2S_{\theta \eta }^{\ \ \mu }(E^{\theta \nu }_{\ \ \sigma }\phi ^{\sigma \eta }+E^{\nu \theta }_{\ \ \sigma }\phi ^{\sigma \eta } \right] .\nonumber \\ \end{aligned}$$
(96)

These, with (50), are the field equations for minus minus metricity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammond, R.T. Gravity and spin with a nonsymmetric metric tensor. Gen Relativ Gravit 51, 97 (2019). https://doi.org/10.1007/s10714-019-2572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2572-8

Keywords

Navigation