Skip to main content
Log in

Gravitoelectromagnetism in metric f(R) and Brans–Dicke theories with a potential

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A Gravitoelectromagnetism formalism in the context of metric f(R) theory is presented and the analogue Lorentz force law is derived. Some interesting results such as the dependence of the deviation from General Relativity (GR) on the absolute value of the scalar potential are found, it is also found that the f(R) effects are only relevant at a shorter distance or when the distance is much less than the compton wavelength, and that the effects are attractive in nature. An investigation of gravitational time delay in the context of metric f(R) is also presented showing that the Ricci scalar alone is responsible for the time delay effect which seems to suggest that the extra scalar degree of freedom associated to f(R) does not provide any modification. Also, to generalise our results, the Lorentz force law and gravitational time delay in the case of Brans–Dicke theories with a potential are derived; it is shown that the results are consistent with those obtained in the case of metric f(R) and GR in the appropriate limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffiths, D.J.: Introduction to Electrodynamics. Hall. Prentice Hall, Upper Saddle River (2005)

    Book  Google Scholar 

  2. Newton, I.: Isaac Newton’s Philosophiae Naturalis Principia Mathematica. Harvard University Press, Cambridge (1972)

    Google Scholar 

  3. Holzmuller, G.: Z. Math. Phys. 15, 69 (1870)

    Google Scholar 

  4. Tisserand, F.: Sur le mouvement des planètes autour du soleil, d’après la loi électrodynamique de Weber. Gauthier-Villars, Paris (1872)

    MATH  Google Scholar 

  5. Tisserand, F.: Comptes Rendus de l’Académie des Sciences (Paris) 100, 313 (1890)

    Google Scholar 

  6. Thirring, H.: Phys. Z 19, 33 (1918)

    Google Scholar 

  7. Thirring, H.: Physikalische Zeitschrift 19, 156 (1918)

    ADS  Google Scholar 

  8. Lense, J., Thirring, H.: Zeitschrift für Physik 19, 156 (1918)

    Google Scholar 

  9. Mashhoon, B., Hehl, F.W., Theiss, D.S.: Nonlinear Gravitodynamics: The Lense-Thirring Effect, pp. 349–388. World Scientific, Singapore (2003)

    Book  Google Scholar 

  10. Ciufolini, I., Wheeler, J.A.: Gravitation and inertia. Princeton University Press, Princeton (1995)

    Book  Google Scholar 

  11. Mashhoon, B., Hehl, F.W., Theiss, D.S.: Gen. Relativ. Gravit. 16(8), 711 (1984)

    Article  ADS  Google Scholar 

  12. De Sitter, W.: Mon. Not. R. Astron. Soc. 77, 155 (1916)

    Article  ADS  Google Scholar 

  13. Ciufolini, I.: Class. Quantum Grav. 17(12), 2369 (2000)

    Article  ADS  Google Scholar 

  14. Mashhoon, B.: Reference Frames and Gravitomagnetism, pp. 121–132. World Scientific, Singapore (2001)

    Book  Google Scholar 

  15. Mashhoon, B., McClune, J.C., Quevedo, H.: Phys. Lett. A 231(1–2), 47 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  16. Mashhoon, B.: Phys. Lett. A 173(4–5), 347 (1993)

    Article  ADS  Google Scholar 

  17. Mashhoon, B.: (2003). arXiv preprint arxiv:gr-qc/0311030

  18. Everitt, C.F., DeBra, D., Parkinson, B., Turneaure, J., Conklin, J., Heifetz, M., Keiser, G., Silbergleit, A., Holmes, T., Kolodziejczak, J., et al.: Phys. Rev. Lett. 106(22), 221101 (2011)

    Article  ADS  Google Scholar 

  19. Woodard, R.: The Invisible Universe: Dark Matter and Dark Energy, pp. 403–433. Springer, New York (2007)

    Book  Google Scholar 

  20. Stelle, K.: Phys. Rev. D 16(4), 953 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  21. Starobinsky, A.A.: Phys. Lett. B 91(1), 99 (1980)

    Article  ADS  Google Scholar 

  22. Sotiriou, T.P.: Phys. Rev. D 79(4), 044035 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. Olmo, G.J., Singh, P.: J. Cosmol. Astropart. Phys. 2009(01), 030 (2009)

    Article  Google Scholar 

  24. Sotiriou, T.P., Liberati, S.: Ann. Phys. 322(4), 935 (2007)

    Article  ADS  Google Scholar 

  25. Dolgov, A.D., Kawasaki, M.: Phys. Lett. B 573, 1 (2003)

    Article  ADS  Google Scholar 

  26. Berry, C.P., Gair, J.R.: Phys. Rev. D 83(10), 104022 (2011)

    Article  ADS  Google Scholar 

  27. Capozziello, S., Stabile, A., Troisi, A.: Phys. Rev. D 76(10), 104019 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  28. Schmidt, H.: Astron. Nachr. 307, 339 (1986)

    Article  ADS  Google Scholar 

  29. Teyssandier, P.: Astron. Nachr. 311(4), 209 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  30. Olmo, G.J.: Phys. Rev. Lett. 95(26), 261102 (2005)

    Article  ADS  Google Scholar 

  31. Corda, C.: Int. J. Modern Phys. A 23(10), 1521 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  32. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (2014)

    Google Scholar 

  33. Capozziello, S., Corda, C., De Laurentis, M.F.: Phys. Lett. B 669(5), 255 (2008)

    Article  ADS  Google Scholar 

  34. Hobson, M.P., Efstathiou, G.P., Lasenby, A.N.: General Relativity: An Introduction for Physicists. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  35. Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  36. Redzic, D.V.: (2013). arXiv preprint arXiv:1303.2567

  37. Bezerra, V., Barros, A., Romero, C.: Braz. J. Phys. 35(4B), 1057 (2005)

    Article  ADS  Google Scholar 

  38. Capozziello, S., Cianci, R., De Laurentis, M., Vignolo, S.: Eur. Phys. J. C 70(1–2), 341 (2010)

    Article  ADS  Google Scholar 

  39. Prasia, P., Kuriakose, V.: Int. J. Modern Phys. D 23(05), 1450037 (2014)

    Article  ADS  Google Scholar 

  40. Ciufolini, I., Kopeikin, S., Mashhoon, B., Ricci, F.: Phys. Lett. A 308(2–3), 101 (2003)

    Article  ADS  Google Scholar 

  41. Barros, A., Romero, C.: Modern Phys. Lett. A 18(30), 2117 (2003)

    Article  ADS  Google Scholar 

  42. Silva, J.R., Barros, A.: Adv. Stud. Theor. Phys. 9, 787 (2015)

    Article  Google Scholar 

  43. Sotiriou, T.P., Faraoni, V.: Rev. Modern Phys. 82(1), 451 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  44. Özer, H., Delice, O.: Class. Quantum Gravity 355, 065002 (2018)

    Article  ADS  Google Scholar 

  45. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  46. Bernabéu, J., Espinoza, C., Mavromatos, N.E.: Phys. Rev. D 81(8), 084002 (2010)

    Article  ADS  Google Scholar 

  47. Dass, A., Liberati, S.: https://arxiv.org/abs/1904.07685. Accessed 20 Apr 2019

Download references

Acknowledgements

AD would like to thank A. Baldazzi for useful discussions. The authors would like to thank M. Rinaldi for useful feedback. This work was done in SISSA, Italy as part of master’s thesis by AD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dass.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Evaluation of the potential term

Appendix: Evaluation of the potential term

From (138), we get for the first derivative of \(V(\phi )\) as

$$\begin{aligned} \frac{d V(\phi )}{d\phi }=\frac{d R(\phi )}{d\phi }f'(R(\phi ))+R(\phi )\frac{d}{d\phi }f'(R(\phi ))-\frac{d}{d\phi }f(R), \end{aligned}$$
(166)

and consequently the second derivative of \(V(\phi )\) can be expressed as

$$\begin{aligned} \begin{aligned} \frac{d^2V(\phi )}{d\phi ^2}&= \frac{d^2R(\phi )}{d\phi ^2}f'(R(\phi )) +\frac{dR(\phi )}{d\phi }\frac{d}{d\phi }f'(R(\phi ))+ R(\phi )\frac{d^2}{d\phi ^2}f'(R(\phi ))\\&\quad +\frac{d}{d\phi }f'(R(\phi ))\frac{d R(\phi )}{d\phi } -\frac{d^2}{d\phi ^2}f(R(\phi )). \end{aligned} \end{aligned}$$
(167)

Now, using the following quantities which we encountered in the linearised metric f(R) section, i.e,

$$\begin{aligned} f(R)&=R^{(1)}+\frac{a_2}{2!}{R^{(1)}}^2,&f'(R)&=1+a_2 R^{(1)}, \end{aligned}$$
(168)

where \(R^{(1)}\) is the linearised Ricci Scalar. In the subsequent calculation, we drop the suffix (1) and introduce at the end for sake of convenience. Hence, we get the following expression after evaluating for (167)

$$\begin{aligned} \frac{d^2V(\phi )}{d\phi ^2}= & {} \frac{d^2R(\phi )}{d\phi ^2}(1+a_2 R(\phi ))+\frac{dR(\phi )}{d\phi }\frac{d}{d\phi }(1+a_2 R(\phi ))+R(\phi )\frac{d^2}{d\phi ^2}(1+a_2 R(\phi ))\nonumber \\&+\frac{d}{d\phi }(1+a_2 R(\phi ))\frac{d R(\phi )}{d\phi }-\frac{d^2}{d\phi ^2}(R(\phi )+\frac{a_2}{2!}R(\phi )^2), \end{aligned}$$
(169)

or

$$\begin{aligned} \frac{d^2V(\phi )}{d\phi ^2}= & {} \frac{d^2R(\phi )}{d\phi ^2}+a_2 R(\phi )\frac{d^2R(\phi )}{d\phi ^2}+a_2\left( \frac{dR(\phi )}{d\phi }\right) ^2 +R(\phi )\frac{d^2R(\phi )}{d\phi ^2}+a_2\left( \frac{dR(\phi )}{d\phi }\right) ^2\nonumber \\&-\frac{d^2R(\phi )}{d\phi ^2} -a_2\left( \frac{dR(\phi )}{d\phi }\right) ^2-a_2 R(\phi )\frac{d^2R(\phi )}{d\phi ^2}, \end{aligned}$$
(170)

and hence, the expression drops to just

$$\begin{aligned} \frac{d^2V(\phi )}{d\phi ^2}=a_2\left( \frac{dR(\phi )}{d\phi }\right) ^2 +R(\phi )\frac{d^2R(\phi )}{d\phi ^2}. \end{aligned}$$
(171)

So, if we use the above result, from (141), we have the following expression

$$\begin{aligned} m_s^2=\frac{\phi _0}{3}\left( a_2\left( \frac{dR^{(1)}(\phi )}{d\phi }\right) ^2 +R^{(1)}(\phi )\frac{d^2R^{(1)}(\phi )}{d\phi ^2}\right) \bigg |_{\phi _0} \end{aligned}$$
(172)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dass, A., Liberati, S. Gravitoelectromagnetism in metric f(R) and Brans–Dicke theories with a potential. Gen Relativ Gravit 51, 84 (2019). https://doi.org/10.1007/s10714-019-2568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2568-4

Keywords

Navigation