Skip to main content
Log in

The orbital Lense–Thirring precession in a strong field

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the exact evolution of the orbital angular momentum of a massive particle in the gravitational field of a Kerr black hole. We show analytically that, for a wide class of orbits, the angular momentum’s hodograph is always close to a circle. This applies to both bounded and unbounded orbits that do not end up in the black hole. Deviations from the circular shape do not exceed \(\approx 10\%\) and \(\approx 7\%\) for bounded and unbounded orbits, respectively. We also find that nutation provides an accurate approximation for those deviations, which fits the exact curve within \(\sim 0.01\%\) for the orbits of maximal deviation. Remarkably, the more the deviation, the better the nutation approximates it. Thus, we demonstrate that the orbital Lense–Thirring precession, originally obtained in the weak-field limit, is also a valid description in the general case of (almost) arbitrary exact orbits. As a by-product, we also derive the parameters of unstable spherical timelike orbits as a function of their radii and arbitrary rotation parameter a and Carter’s constant Q. We verify our results numerically for all the kinds of orbits studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. From the viewpoint of intrinsic geometry, the plane is, of course, not flat and has a nonvanishing curvature. Also note that the “Cartesian” coordinates are different from the Kerr–Schild coordinates.

  2. The precession of the axis of a gyroscope [8] which is also referred to as the Lense–Thirring effect is not pertinent to this Paper (see also a discussion of certain analogies between the two effects in Conclusion).

  3. Another factorization proposed in [17] can be convenient if the sum \(Q + (L_z - aE)^2\) is used instead of the Carter’s constant.

  4. The precession of a gyroscope on essentially relativistic bounded orbits around a Kerr black hole was studied in [34]. However, the explicit expressions are quite cumbersome (even when restricted to the case of equatorial plane), and the properties of the nutation in this fully relativistic case are not evident.

  5. At the proofreading stage, it was brought to our attention that similar relations are available in [35, 36]. But since they are given without derivation there and are not readily reduced to the relations of Appendix C, a cross-check is needed, which will be done elsewhere.

References

  1. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon Press, Oxford (1975)

    MATH  Google Scholar 

  2. Farina, C., Kort-Kamp, W.J.M., Mauro, S., Shapiro, I.L.: Phys. Rev. D 83, 12 (2011). https://doi.org/10.1103/physrevd.83.124037

    Article  Google Scholar 

  3. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W.H. Freeman and Co., San Francisco (1973)

    Google Scholar 

  4. Frolov, V.P., Novikov, I.D.: Black Hole Physics: Basic Concepts and New Developments. Kluwer Academic, Dordrecht (1998)

    Book  Google Scholar 

  5. Visser, M.: The Kerr spacetime: a brief introduction (2007). arXiv: gr-qc/0706.0622

  6. Lense, J., Thirring, H.: Zeit. Phys. 19, 156 (1918)

    Google Scholar 

  7. Mashhoon, B., Hehl, F.W., Theiss, D.S.: Gen. Relativ. Gravit. 16(8), 711 (1984). https://doi.org/10.1007/bf00762913

    Article  ADS  Google Scholar 

  8. Schiff, L.I.: Phys. Rev. Lett. 4(5), 215 (1960). https://doi.org/10.1103/physrevlett.4.215

    Article  ADS  Google Scholar 

  9. Wilkins, D.C.: Phys. Rev. D 5(4), 814 (1972). https://doi.org/10.1103/physrevd.5.814

    Article  ADS  Google Scholar 

  10. Goldstein, H.: Zeitschrift für Physik 271(3), 275 (1974). https://doi.org/10.1007/bf01677935

    Article  ADS  Google Scholar 

  11. Teo, E.: Gen. Relativ. Gravit. 35(11), 1909 (2003). https://doi.org/10.1023/a:1026286607562

    Article  ADS  Google Scholar 

  12. Giannoni, F., Masiello, A.: Nonlinear Anal. Theory J. Funct. Anal. 101(2), 340 (1991). https://doi.org/10.1016/0022-1236(91)90162-x

    Article  Google Scholar 

  13. Masiello, A.: Nonlinear Anal. Theory Methods Appl. 19(6), 531 (1992). https://doi.org/10.1016/0362-546x(92)90019-b

    Article  MathSciNet  Google Scholar 

  14. Hasse, W., Perlick, V.: J. Math. Phys. 47(4), 042503 (2006). https://doi.org/10.1063/1.2188209

    Article  MathSciNet  ADS  Google Scholar 

  15. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press/Oxford University Press, Oxford/New York (1983)

    MATH  Google Scholar 

  16. Carter, B.: Phys. Rev. 174(5), 1559 (1968). https://doi.org/10.1103/physrev.174.1559

    Article  ADS  Google Scholar 

  17. Krivenko, O.P., Pyragas, K.A., Zhuk, I.T.: Astrophys. Space Sci. 40(1), 39 (1976). https://doi.org/10.1007/bf00651187

    Article  MathSciNet  ADS  Google Scholar 

  18. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Astrophys. J. 178, 347 (1972). https://doi.org/10.1086/151796

    Article  ADS  Google Scholar 

  19. Jefremov, P.I., Tsupko, O.Y., Bisnovatyi-Kogan, G.S.: Phys. Rev. D 91, 12 (2015). https://doi.org/10.1103/physrevd.91.124030

    Article  Google Scholar 

  20. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford (1969)

    MATH  Google Scholar 

  21. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, Leipzig (2008)

    MATH  Google Scholar 

  22. Ciufolini, I., Pavlis, E.C.: Nature 431(7011), 958 (2004). https://doi.org/10.1038/nature03007

    Article  ADS  Google Scholar 

  23. Everitt, C.W.F., DeBra, D.B., Parkinson, B.W., Turneaure, J.P., Conklin, J.W., Heifetz, M.I., Keiser, G.M., Silbergleit, A.S., Holmes, T., Kolodziejczak, J., Al-Meshari, M., Mester, J.C., Muhlfelder, B., Solomonik, V.G., Stahl, K., Worden, P.W., Bencze, W., Buchman, S., Clarke, B., Al-Jadaan, A., Al-Jibreen, H., Li, J., Lipa, J.A., Lockhart, J.M., Al-Suwaidan, B., Taber, M., Wang, S.: Phys. Rev. Lett. 106, 22 (2011). https://doi.org/10.1103/physrevlett.106.221101

    Article  Google Scholar 

  24. Reach, W.T., Lisse, C., von Hippel, T., Mullally, F.: Astrophys. J. 693(1), 697 (2009). https://doi.org/10.1088/0004-637x/693/1/697

    Article  ADS  Google Scholar 

  25. Koester, D., Dreizler, S., Weidemann, V., Allard, N.F.: Astron. Astrophys. 338, 612 (1998)

    ADS  Google Scholar 

  26. Ciufolini, I., Paolozzi, A., Pavlis, E.C., Ries, J.C., Koenig, R., Matzner, R.A., Sindoni, G., Neumayer, H.: Space Sci. Rev. 148(1–4), 71 (2009). https://doi.org/10.1007/s11214-009-9585-7

    Article  ADS  Google Scholar 

  27. Pepe, F., Molaro, P., Cristiani, S., Rebolo, R., Santos, N., Dekker, H., Mégevand, D., Zerbi, F., Cabral, A., Marcantonio, P.D., Abreu, M., Affolter, M., Aliverti, M., Prieto, C.A., Amate, M., Avila, G., Baldini, V., Bristow, P., Broeg, C., Cirami, R., Coelho, J., Conconi, P., Coretti, I., Cupani, G., D’Odorico, V., Caprio, V.D., Delabre, B., Dorn, R., Figueira, P., Fragoso, A., Galeotta, S., Genolet, L., Gomes, R., Hernández, J.G., Hughes, I., Iwert, O., Kerber, F., Landoni, M., Lizon, J.L., Lovis, C., Maire, C., Mannetta, M., Martins, C., Monteiro, M., Oliveira, A., Poretti, E., Rasilla, J., Riva, M., Tschudi, S.S., Santos, P., Sosnowska, D., Sousa, S., Spanó, P., Tenegi, F., Toso, G., Vanzella, E., Viel, M., Osorio, M.Z.: Astronomische Nachrichten 335(1), 8 (2014). https://doi.org/10.1002/asna.201312004

    Article  ADS  Google Scholar 

  28. de Sitter, W.: Mon. Not. R. Astron. Soc. 76(9), 699 (1916). https://doi.org/10.1093/mnras/76.9.699

    Article  ADS  Google Scholar 

  29. Bertotti, B., Ciufolini, I., Bender, P.L.: Phys. Rev. Lett. 58(11), 1062 (1987). https://doi.org/10.1103/physrevlett.58.1062

    Article  MathSciNet  ADS  Google Scholar 

  30. Shapiro, I.I., Reasenberg, R.D., Chandler, J.F., Babcock, R.W.: Phys. Rev. Lett. 61(23), 2643 (1988). https://doi.org/10.1103/physrevlett.61.2643

    Article  ADS  Google Scholar 

  31. Mashhoon, B., Theiss, D.S.: Phys. Lett. A 115(7), 333 (1986). https://doi.org/10.1016/0375-9601(86)90625-0

    Article  ADS  Google Scholar 

  32. Mashhoon, B., Theiss, D.S.: In Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, pp. 310–316. Springer, Berlin (2001). https://doi.org/10.1007/3-540-40988-2_15

  33. Mashhoon, B., Theiss, D.S.: Il Nuovo Cimento B Series 11 106(5), 545 (1991). https://doi.org/10.1007/bf02726789

    Article  Google Scholar 

  34. Bini, D., Geralico, A., Jantzen, R.T.: Phys. Rev. D 94, 6 (2016). https://doi.org/10.1103/physrevd.94.064066

    Article  Google Scholar 

  35. Grib, A.A., Pavlov, Y.V.: Are black holes totally black? Gravitation. Cosmol. 21(1), 13–18 (2015). arXiv:1410.5736 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  36. Grib, A.A., Pavlov, Y.V.: High energy physics in the vicinity of rotating black holes. Theor. Math. Phys. 185(1), 1425–1432 (2015). arXiv:1503.04289 [gr-qc]

    Article  MathSciNet  Google Scholar 

  37. Johnston, M., Ruffini, R.: Phys. Rev. D 10(8), 2324 (1974). https://doi.org/10.1103/PhysRevD.10.2324

    Article  ADS  Google Scholar 

  38. Meurer, A., Smith, C.P., Paprocki, M., Čertík, O., Kirpichev, S.B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger, B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M.J., Terrel, A.R., Roučka, v, Saboo, A., Fernando, I., Kulal, S., Cimrman, R.: PeerJ Comput. Sci. 3, e103 (2017). https://doi.org/10.7717/peerj-cs.103

    Article  Google Scholar 

  39. Pérez, F., Granger, B.E.: Comput. Sci. Eng. 9(3), 21 (2007). https://doi.org/10.1109/MCSE.2007.53

    Article  Google Scholar 

  40. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/

  41. Hunter, J.D.: Comput. Sci. Eng. 9(3), 90 (2007)

    Article  Google Scholar 

  42. Van Der Walt, S., Colbert, S.C., Varoquaux, G.: Comput. Sci. Eng. 13(2), 22 (2011)

    Article  Google Scholar 

  43. Sharp, N.: J. Comput. Phys. 41(2), 295 (1981). https://doi.org/10.1016/0021-9991(81)90098-x

    Article  MathSciNet  ADS  Google Scholar 

  44. Zakharov, A.F.: Mon. Not. R. Astron. Soc. 269(2), 283 (1994). https://doi.org/10.1093/mnras/269.2.283

    Article  ADS  Google Scholar 

  45. Zakharov, A.F., Repin, S.V.: Astron. Rep. 43, 705 (1999)

    ADS  Google Scholar 

Download references

Acknowledgements

The analytic part of this research was carried out by VNS and supported by a grant of the Russian Science Foundation (Project No. 17-71-10260). The numeric simulations were carried out by SKh. We are grateful to V.S. Beskin and Yu.Yu. Kovalev for providing a work environment which made completion of this Paper possible. We thank S.V. Repin for useful comments regarding the numerical simulation of geodesics and a presentation of this work before a committee. Last but not least, we thank an anonymous reviewer for pointing out (among other constructive comments) the analogy between the orbital Lense–Thirring precession and the precession of a gyroscope. Symbolic computations were partially performed with SymPy [38]. We also made use of IPython [39], SciPy [40], Matplotlib [41], and NumPy [42].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir N. Strokov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Numeric solution of geodesic equations

The geodesic equations can be recast into a form that is more convenient for numeric simulations [43,44,45]. Although the number of equations increases, now there is no need to track signs of the square roots present in the initial form. The equations to be solved are

$$\begin{aligned} \frac{dr}{d\gamma }= & {} r_1 \end{aligned}$$
(68)
$$\begin{aligned} \frac{d r_1}{d\gamma }= & {} \frac{1}{2E}\frac{\,\mathrm{d}R(r)}{\,\mathrm{d}r} \nonumber \\= & {} 2r^3 + r\left( a^2 - \xi ^2 - \eta \right) + \left( a-\xi \right) ^2 + \eta - \frac{r}{E^2}\left( 2r^2 - 3r + a^2\right) \end{aligned}$$
(69)
$$\begin{aligned} \frac{d\theta }{d\gamma }= & {} \theta _1 \end{aligned}$$
(70)
$$\begin{aligned} \frac{d\theta _1}{d\gamma }= & {} \frac{1}{2E}\frac{\,\mathrm{d}\varTheta (\theta )}{\,\mathrm{d}\theta }=\cos \theta \left[ a^2(E^{-2}-1)\sin \theta +\frac{\xi ^2}{\sin ^3\theta }\right] \end{aligned}$$
(71)
$$\begin{aligned} \frac{d\phi }{d\gamma }= & {} \frac{\xi }{\sin ^2\theta } - a +\frac{a(r^2+a^2-\xi a)}{r^2-2r+a^2}, \end{aligned}$$
(72)

where \(d\tau /d\gamma =\rho ^2/E\), \(\xi = L_z/E\), and \(\eta =Q/E^2\). Also, the following relations hold between the functions:

$$\begin{aligned} r_1^2= & {} r^4 + \left( a^2 - \xi ^2 - \eta \right) r^2 \nonumber \\&+ 2\left[ (a-\xi )^2 + \eta \right] r - a^2\eta - \frac{r^2}{E^2}\left( r^2-2r+a^2\right) , \end{aligned}$$
(73)
$$\begin{aligned} \theta _1^2= & {} \eta - \cos ^{2}{\theta }\left[ a^2(E^{-2}-1) + \frac{\xi ^2}{\sin ^{2}{\theta }}\right] . \end{aligned}$$
(74)

This set of differential equations was numerically solved with either the classical or variable step [21] fourth-order Runge–Kutta method. That numeric solution was then used to draw the hodographs in Figs. 2, 3, 5, and 6. For convenience and reproducibility, we summarize the parameters for those hodographs in Table 2. Together with \(r_1\) and \(\theta _1\) evaluated through relations (73) and (74), they yield initial conditions for equations of motion (68)–(72). Also, we always choose \(r_1<0\) and \(\theta _1>0\) at the start.

Table 2 Initial conditions for orbits with noncircular hodographs

B Behavior of functions E(ya) and \(L_z(y,a)\) (the parameters of stable circular equatorial orbits)

Consider functions E(ya) and \(L_z(y,a)\), which are given by (16) and (17), in the range \(y\in (0,1/r_{\mathrm{ph}}^{\pm })\). Their derivatives are

$$\begin{aligned} \frac{\partial E}{\partial y}= & {} -\frac{1 - 6y \pm 8ay^{3/2} - 3a^2y^2}{2\left( 1 - 3y \pm 2ay^{3/2}\right) ^{3/2}}, \end{aligned}$$
(75)
$$\begin{aligned} \frac{\partial L_z}{\partial y}= & {} \mp \frac{(1 - 6y \pm 8ay^{3/2} - 3a^2y^2)(1\pm ay^{3/2})}{2\left[ y\left( 1 - 3y \pm 2ay^{3/2}\right) \right] ^{3/2}}. \end{aligned}$$
(76)

They vanish simultaneously at \(y = 1/r_{\mathrm{isco}}^{\pm }\), which satisfies [18]

$$\begin{aligned} 1 - 6y \pm 8ay^{3/2} - 3a^2y^2 = 0. \end{aligned}$$
(77)

Besides, \(E\rightarrow 1\) and \(L_z\rightarrow \pm \infty \) as \(y\rightarrow 0\), and \(E\rightarrow +\infty \) and \(L_z\rightarrow \pm \infty \) as \(y\rightarrow y_{\pm } = 1/r_{\mathrm{ph}}^{\pm }\). Therefore, at \(y = 1/r_{\mathrm{isco}}^{\pm }\), E(ya) must have a minimum, and \(L_z(y,a)\) must have a minimum (maximum) at \(y = 1/r_{\mathrm{isco}}^{+}\) (\(y = 1/r_{\mathrm{isco}}^{-}\)). In other words, both E(ya) and \(L_z^{2}(y,a)\) have a minimum at \(y = 1/r_{\mathrm{isco}}^{\pm }\).

C Parameters of unstable spherical orbits with \(E>1\) and arbitrary Q

Consider conditions (26) and (27) without omitting terms \(\propto q\equiv 1/Q\):

$$\begin{aligned}&\epsilon ^{2} - 2 \epsilon x\cdot a y^{2} - x^{2}y^{2}(1 - 2 y) - y^{2}\varDelta _y- q\varDelta _y = 0, \end{aligned}$$
(78)
$$\begin{aligned}&- 2 \epsilon x \cdot a y - x^{2}y(1- 3 y) - y (1 - 3 y + 2 a^{2} y^{2}) + q(1-a^2 y) = 0 , \end{aligned}$$
(79)

where \(\varDelta _y\equiv a^2y^2 - 2y + 1 > 0\).

Solving the second of the equations for \(\epsilon \) and subtituting the solution to the first equation leads to a quadratic equation with respect to \(x^2\):

$$\begin{aligned} Ax^4 + 2Kx^2 + C =0, \end{aligned}$$
(80)

where

$$\begin{aligned} A\equiv & {} -(4 a^{2} y^{3} - 9 y^{2} + 6 y - 1)<0, \qquad 1/r_{\mathrm{ph}}^{-}< y < 1/r_{\mathrm{ph}}^{+}, \end{aligned}$$
(81)
$$\begin{aligned} K\equiv & {} 2a^2y^2\varDelta _y + A - q\left( a^2 + a^2y - \frac{3y-1}{y}\right) , \end{aligned}$$
(82)
$$\begin{aligned} C\equiv & {} \left( 2a^2y^2 - 3y + 1 + \frac{q(a^2y - 1)}{y}\right) ^2\ge 0. \end{aligned}$$
(83)

Let us now study how solutions to the quadratic equation behave at \(y_{\pm }=1/r_{\mathrm{ph}}^{\pm }\). First, note that

$$\begin{aligned} \lim \limits _{y\rightarrow y_{\pm }}{A(y)} =\lim \limits _{y\rightarrow y_{\pm }}{[(3y-1)^2 - 4a^2y^3]}=0. \end{aligned}$$
(84)

Since \(C > 0\) and \(A\rightarrow 0^{-}\) as \(y\rightarrow y_{\pm }\), the roots of (80) have opposite signs. One of them tends to infinity and the other tends to a finite number. Their specific signs depend on the sign of K. If \(K>0\), the infinite root is positive and the finite root is negative. Otherwise, the infinite root is negative and the finite root is positive. If \(K=0\), both roots tend to infinities of opposite signs.

If \(q=0\) or, by continuity, \(q<<1\), then \(\lim \limits _{y\rightarrow y_{\pm }}{K}>0\), and at both \(y_{-}\) and \(y_{+}\) there is a positive infinite root. This root is the one that leads to solution (30)–(32) obtained under assumption \(q<<1\).

For arbitrary \(q>0\), it proves helpful to actually solve equation (80). A positive root is found from relation

$$\begin{aligned} -x^2 A= & {} (2a^2y^2 - 3y + 1)^2 - q\left( a^2y+a^2 - \frac{3y-1}{y}\right) \nonumber \\&+ 2a\varDelta _y\left[ \frac{\sqrt{\left( 2q + y(3y-1)\right) ^2 - y^2 A}}{2\sqrt{y}}-ay^2\right] . \end{aligned}$$
(85)

At \(y_{+}\), which satisfies \(3y-1 = 2ay^{3/2}>0\), the coefficient that multiplies q is reduced as follows:

$$\begin{aligned}&-a^2y-a^2 + \frac{3y-1}{y} + \frac{2a\varDelta _y}{y^{1/2}} = -a^2y-a^2 - 2ay^{1/2} + 2a^3y^{3/2} + \frac{2a}{y^{1/2}} \nonumber \\&\quad = -a^2y-a^2 - 2ay^{1/2} + a^2(3y-1) + \frac{2a}{y^{1/2}} = \frac{2a(1-y)(1-ay^{1/2})}{y^{1/2}} \nonumber \\&\quad = \frac{ay(1 + y - 2ay^{1/2})}{y^{3/2}} =\frac{a(y(1+y)-3y+1)}{y^{3/2}} = \frac{a(1-y)^2}{y^{3/2}}. \end{aligned}$$
(86)

Hence, as soon as \(0<a<1\),

$$\begin{aligned} x^2 = -\frac{(2a^2y^2 - 3y + 1)^2 + \frac{a(1-y)^2}{y^{3/2}}q}{A} \rightarrow +\infty \quad \text{ as } \quad A\rightarrow 0^{-}. \end{aligned}$$
(87)

At \(y_{-}\), which satisfies \(3y-1 = -2ay^{3/2}<0\), the result depends on the magnitude of q. If \(q\ge -y(3y-1)/2 = ay^{5/2}\), a similar calculation leads to a right-hand side of (85) that vanishes as \(A\rightarrow 0^{-}\). Thus, in this case the root tends to a finite positive value. Otherwise, the root tends to an infinite positive value.

The function \(a[y_{-}(a)]^{5/2}\) grows in the range \(0\le a\le 1\) reaching its maximal value 1 / 32 at \(a=1\). Consequently, for a given \(a\in (0,1)\), there is a critical value of q that is below 1 / 32, which separates the cases of bounded and unbounded growth of \(x^2\) in a neighborhood of \(y_{-}\). Also, if q is sufficiently small, the growth is always unbounded, which corresponds to the limiting case represented by (30)–(32).

Another feature of \(x^2\) is that, for sufficiently small q, it vanishes at a point \(y_0\in (y_{-},y_{+})\) where it also reaches a minimum. Indeed, for \(q=0\) it is trivial to verify this. If \(q<<1, q\ne 0\), the minimum value must simultaneously satisfy equations

$$\begin{aligned}&Ax^4 + 2Kx^2 + C =0, \end{aligned}$$
(88)
$$\begin{aligned}&x^4\frac{\partial A}{\partial y} + 2x^2\frac{\partial K}{\partial y} + \frac{\partial C}{\partial y} =0. \end{aligned}$$
(89)

Since C and \(\partial C/\partial y\) have a common root, \(x^2=0\) satisfies this last set of equations at that common root and, by continuity, is a minimum of the non-negative function \(x^2\). The case of q that is large enough for the common root to become complex is beyond the scope of this article.

To ensure that \(\epsilon >0\), the following signs must be chosen for x:

$$\begin{aligned} x = \left\{ \begin{array}{ll} \sqrt{x^2}, &{} \quad y_0\le y< y_{+}, \\ -\sqrt{x^2}, &{} \quad y_{-}<y<y_0. \end{array} \right. \end{aligned}$$
(90)

Finally, the x found is used to evaluate \(\epsilon \) and \(\lambda _z\):

$$\begin{aligned} \epsilon= & {} x\frac{3y-1}{2a} -\frac{1}{2ax}\left( \frac{q(a^2 y-1)}{y} + 2a^2y^2 - 3y+1\right) , \end{aligned}$$
(91)
$$\begin{aligned} \lambda _z= & {} x + a\epsilon . \end{aligned}$$
(92)

Note that \(\epsilon (y_0)\) is a well-defined number, because term 1 / x multiplies an expression that vanishes at that point. From (78), \(\epsilon (y_0) = \sqrt{(y_0^2 + q)\varDelta _y(y_0)}\).

As it was pointed out, for q that is small enough and \(0<a<1\), \(\lim \limits _{y\rightarrow y_{\pm }}{x^2}=+\infty \). Therefore,

$$\begin{aligned}&\lim \limits _{y\rightarrow y_{\pm }}{\epsilon }=+\infty , \end{aligned}$$
(93)
$$\begin{aligned}&\lim \limits _{y\rightarrow y_{+}}{\lambda _z} = +\infty , \quad \lim \limits _{y\rightarrow y_{-}}{\lambda _z} = -\infty , \end{aligned}$$
(94)
$$\begin{aligned}&\lim \limits _{y\rightarrow y_{\pm }}{\frac{\lambda _z}{\epsilon }} = \lim \limits _{y\rightarrow y_{\pm }}{\left. \frac{\lambda _z}{\epsilon }\right| _{q=0}} = -\left. \frac{1 - 3 y + a^{2} y^{2} + a^{2} y^{3} }{a y^{2} \left( 1 - y \right) }\right| _{y=y_{\pm }}. \end{aligned}$$
(95)

In the last equation we have used the fact that the ratio does not depend on q. Indeed, if we divide (78) by \(x^2\), terms that contain q vanish as \(x^2\rightarrow +\infty \) and have no impact on the value of the limit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strokov, V.N., Khlghatyan, S. The orbital Lense–Thirring precession in a strong field. Gen Relativ Gravit 51, 82 (2019). https://doi.org/10.1007/s10714-019-2563-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2563-9

Keywords

Navigation