Skip to main content
Log in

Geometry and topology of the Kerr photon region in the phase space

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

A Correction to this article was published on 20 November 2019

This article has been updated

Abstract

We study the set of trapped photons of a subcritical (\(a<M\)) Kerr spacetime as a subset of the phase space. First, we present an explicit proof that the photons of constant Boyer–Lindquist coordinate radius are the only photons in the Kerr exterior region that are trapped in the sense that they stay away both from the horizon and from spacelike infinity. We then proceed to identify the set of trapped photons as a subset of the (co-)tangent bundle of the subcritical Kerr spacetime. We give a new proof showing that this set is a smooth 5-dimensional submanifold of the (co-)tangent bundle with topology \(SO(3)\times {\mathbb {R}}^2\) using results about the classification of 3-manifolds and of Seifert fiber spaces. Both results are covered by the rigorous analysis of Dyatlov (Commun Math Phys 335(3):1445–1485, 2015); however, the methods we use are very different and shed new light on the results and possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 20 November 2019

    The proof of Theorem 10 can be considerably simplified, as was pointed out to us by Gregory J.

Notes

  1. In Schwarzschild, the statement is no longer true, as is demonstrated by the striking counterexample of the photon sphere \(\{r=3M\}\). The proof of Corollary 3 cannot be immitated in the \(a=0\) case since there we do not have Eqs. (7) and (8) at our disposition.

References

  1. Cederbaum, C.: Uniqueness of photon spheres in static vacuum asymptotically flat spacetimes. In: Complex Analysis & Dynamical Systems IV, Volume 667 of Contemporary Mathematics, pp. 86–99. AMS (2015)

  2. Cederbaum, C., Galloway, G.J.: Uniqueness of photon spheres in electro-vacuum spacetimes. Class. Quantum Gravity 33(7), 075006 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cederbaum, C., Galloway, G.J.: Uniqueness of photon spheres via positive mass rigidity. Commun. Anal. Geom. 25(2), 303–320 (2017)

    Article  MathSciNet  Google Scholar 

  4. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves (2008). arXiv:0811.0354 [gr-qc]

  5. Dyatlov, S.: Asymptotics of linear waves and resonances with applications to black holes. Commun. Math. Phys. 335(3), 1445–1485 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Geiges, H., Lange, C.: Seifert fibrations of lens spaces. arXiv:gr-qc/0512066

  7. Grenzebach, A.: The Shadow of Black Holes. An Analytic Description. Springer, Berlin (2016)

    MATH  Google Scholar 

  8. Grenzebach, A., Perlick, V., Lämmerzahl, C.: Photon regions and shadows of Kerr–Newman–NUT black holes with a cosmological constant. Phys. Rev. D 89(12), 124004 (2014)

    Article  ADS  Google Scholar 

  9. Grenzebach, A., Perlick, V., Lämmerzahl, C.: Photon regions and shadows of accelerated black holes. Int. J. Mod. Phys. D 24, 1542024 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hatcher, A.: Notes on basic 3-manifold topology. http://pi.math.cornell.edu/~hatcher/3M/3Mdownloads.html (2007). Accessed 18 June 2018

  11. O’Neill, B.: The Geometry of Kerr Black Holes. Dover Publications, Mineola, New York (2014)

    MATH  Google Scholar 

  12. Orlik, P.: Seifert Manifolds, Volume 291 of Lecture Notes in Mathematics. Springer, Berlin (1972)

    Google Scholar 

  13. Paganini, C., Ruba, B., Oancea, M.A.: Characterization of Null Geodesics on Kerr Spacetimes (2016). arXiv:1611.06927 [gr-qc]

  14. Perlick, V.: Gravitational lensing from a spacetime perspective. Living Rev. Relativ. 7(1), 9 (2004)

    Article  ADS  Google Scholar 

  15. Perlick, V.: On totally umbilic submanifolds of semi-Riemannian manifolds. Nonlinear Anal. 63(5–7), 511–518 (2005)

    Article  Google Scholar 

  16. Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15(5), 401–487 (1983)

    Article  MathSciNet  Google Scholar 

  17. Shoom, A.A.: Metamorphoses of a photon sphere. Phys. Rev. D 96, 084056 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Shoom, A.A., Walsh, C., Booth, I.: Geodesic motion around a distorted static black hole. Phys. Rev. D 93, 064019 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Sommers, P.: On Killing tensors and constants of motion. J. Math. Phys. 14(6), 787–790 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  20. Tangherlini, F.R.: Schwarzschild field in \(n\) dimensions and the dimensionality of space problem. Nuovo Cim. 27, 636–651 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  21. Teo, E.: Spherical photon orbits around a Kerr black hole. Gen. Relativ. Gravit. 35(11), 1909–1926 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. Yazadjiev, S., Lazov, B.: Uniqueness of the static Einstein–Maxwell spacetimes with a photon sphere. Class. Quantum Gravity 32(16), 165021 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yazadjiev, S.S.: Uniqueness of the static spacetimes with a photon sphere in Einstein-scalar field theory. Phys. Rev. D 91(12), 123013 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yazadjiev, S.S., Lazov, B.: Classification of the static and asymptotically flat Einstein–Maxwell-dilaton spacetimes with a photon sphere. Phys. Rev. D 93(8), 083002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Yoshino, H.: Uniqueness of static photon surfaces: perturbative approach. Phys. Rev. D 95, 044047 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Pieter Blue and András Vasy for useful comments. Furthermore, we thank Oliver Schön for generating the figures for this article. This work is supported by the Institutional Strategy of the University of Tübingen (Deutsche Forschungsgemeinschaft, ZUK 63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Jahns.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cederbaum, C., Jahns, S. Geometry and topology of the Kerr photon region in the phase space. Gen Relativ Gravit 51, 79 (2019). https://doi.org/10.1007/s10714-019-2561-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2561-y

Keywords

Navigation