Skip to main content
Log in

Thermodynamics of Reissner–Nordstr\(\ddot{\mathrm{o}}\)m black holes in higher dimensions: rainbow gravity background with general uncertainty principle

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we investigate the thermodynamic properties of Reissner–Nordstr\(\ddot{\mathrm{o}}\)m black holes embedded in higher (d) dimensions in the framework of rainbow gravity incorporating the effects of the generalized uncertainty principle. We also examine all the properties graphically by varying the rainbow gravity parameter \(\eta \) and the generalized uncertainty principle parameter \(\alpha \). We find the existence of remnant and critical mass of the concerned black hole. We calculate the local temperature, local internal energy and hence we analyse the thermal stability of the black hole by computing the local heat capacity. Further, we study the phase transitions of the aforesaid black hole solution under the effects of generalized uncertainty principle. From the analysis of the specific heat at the horizon, we observe that there are phase transitions for all dimensions but when we analyze the same, measured by the local observer, we find that there exist only two phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. Which is assumed as an observer independent minimum measurable length scale (strongly indicated in all quantum gravity theories, viz., string theory [1], loop quantum gravity [2, 3], Lorentzian dynamical triangulations [4,5,6] and noncommutative geometry [7] to name a few).

References

  1. Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41 (1898)

    Article  ADS  Google Scholar 

  2. Rovelli, C.: Living Rev. Relativ. 1, 1 (1998)

    Article  ADS  Google Scholar 

  3. Carlip, S.: Rep. Prog. Phys. 64, 885 (2001)

    Article  ADS  Google Scholar 

  4. Ambjorn, J., Loll, R.: Nucl. Phys. B 536, 407 (1998)

    Article  ADS  Google Scholar 

  5. Ambjorn, J., Jurkiewicz, J., Loll, R.: Phys. Rev. Lett. 85, 924 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ambjorn, J., Jurkiewicz, J., Loll, R.: Nucl. Phys. B 610, 347 (2001)

    Article  ADS  Google Scholar 

  7. Girelli, F., Livine, E.R., Oriti, D.: Nucl. Phys. B 708, 411 (2005)

    Article  ADS  Google Scholar 

  8. Kostelecky, V.A., Samuel, S.: Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  9. t’Hooft, G.: Class. Quan. Grav. 13, 1023 (1996)

    Article  ADS  Google Scholar 

  10. Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Sarkar, S.: Nature (London) 393, 763 (1998)

    Article  ADS  Google Scholar 

  11. Gambini, R., Pullin, J.: Phys. Rev. D 59, 124021 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Carroll, S.M., et al.: Phys. Rev. Lett. 87, 141601 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  13. Amelino-Camelia, G.: Int. J. Modern Phys. D 11, 35 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Magueijo, J., Smolin, L.: Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  15. Alfaro, J., et al.: Phys. Rev. D 65, 103509 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. Sahlmann, H., Thiemann, T.: Class. Quan. Grav. 23, 909 (2002)

    Article  ADS  Google Scholar 

  17. Smolin, L.: Nucl. Phys. B 742, 142 (2006)

    Article  ADS  Google Scholar 

  18. Magueijo, J., Smolin, L.: Class. Quan. Grav. 21, 1725 (2004)

    Article  ADS  Google Scholar 

  19. Ali, A.F., Faizal, M., Khalil, M.M.: J. High Energy Phys. 1412, 159 (2014)

    Article  ADS  Google Scholar 

  20. Ali, A.F., Faizal, M., Khalil, M.M.: Nucl. Phys. B 894, 341 (2015)

    Article  ADS  Google Scholar 

  21. Ali, A.F., Faizal, M., Khalil, M.M.: Phys. Lett. B 743, 295 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Magueijo, J., Smolin, L.: Phys. Rev. D 67, 044017 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hendi, S.H., Bordbar, G.H., Eslam Panah, B., Panahiyan, S.: JCAP 09, 013 (2016)

    Article  ADS  Google Scholar 

  24. Hendi, S.H., Momennia, M., Eslam Panah, B., Panahiyan, S.: Phys. Dark. Universe 16, 26 (2017)

    Article  ADS  Google Scholar 

  25. Adler, R.J., Chen, P., Santiago, D.I.: Gen. Relativ. Gravit. 33, 2101 (2001)

    Article  ADS  Google Scholar 

  26. Myung, Y.S., Kim, Y.W., Park, Y.J.: Phys. Lett. B 645, 393 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Dutta, A., Gangopadhyay, S.: Gen. Relativ. Gravit. 46, 1747 (2014)

    Article  ADS  Google Scholar 

  28. Gangopadhyay, S., Dutta, A., Faizal, M.: Eur. Phys. Lett. 112, 20006 (2015)

    Article  ADS  Google Scholar 

  29. Ling, Y., Li, X., Zhang, H.B.: Mod. Phys. Lett. A 22, 2749 (2007)

    Article  ADS  Google Scholar 

  30. Li, H., Ling, Y., Han, X.: Class. Quan. Grav. 26, 065004 (2009)

    Article  ADS  Google Scholar 

  31. Feng, Z.W., Yang, S.Z.: Phys. Lett. B 772, 737 (2017)

    Article  ADS  Google Scholar 

  32. Panahiyan, S., Hendi, S.H., Raizi, N.: Nucl. Phys. B 938, 388 (2019)

    Article  ADS  Google Scholar 

  33. Alsaleh, S.: IJMPA 32, 1750076 (2017)

    Article  ADS  Google Scholar 

  34. Hendi, S.H., Dehghani, A., Faizal, M.: Nucl. Phys. B 914, 117 (2017)

    Article  ADS  Google Scholar 

  35. Hendi, S.H., Panah, B.E., Panahiyan, S., Momennia, M.: EPJC 77, 647 (2017)

    Article  ADS  Google Scholar 

  36. Hendi, S.H., Panah, B.E., Panahiyan, S., Momennia, M.: Adv. High Energy Phys. 2016, 9813582 (2016)

    Article  Google Scholar 

  37. Chamblin, A., Emparan, R., Jhonson, C., Myers, R.: Phys. Rev. D 60, 064018 (1999). arXiv:hep-th/9902170

    Article  ADS  MathSciNet  Google Scholar 

  38. Bekenstein, J.D.: Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  39. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975). https://doi.org/10.1007/BF02345020. Erratum: Commun. Math. Phys. 46, 206 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  40. Hawking, S.W.: Phys. Rev. D 13, 191 (1976)

    Article  ADS  Google Scholar 

  41. Zhao, R., Wu, Y.Q., Zhang, L.C.: Class. Quant. Grav. 20, 4885 (2003)

    Article  Google Scholar 

  42. Sun, Xue-Feng, Wen-Biao, : Phys. Lett. A 19, 677 (2004)

    Google Scholar 

  43. Cavaglia, M., Das, S.: Class. Quan. Grav. 21, 4511 (2004)

    Article  ADS  Google Scholar 

  44. Ali, A.F.: Phys. Rev. D 89, 104040 (2014)

    Article  ADS  Google Scholar 

  45. Rudra, P., Biswas, R., Debnath, U.: Astrophys. Space Sci. 335, 505 (2011)

    Article  ADS  Google Scholar 

  46. Debnath, U., Rudra, P., Biswas, R.: Astrophys. Space Sci. 339, 135 (2012)

    Article  ADS  Google Scholar 

  47. Rudra, P., Biswas, R., Debnath, U.: Astrophys. Space Sci. 342, 557 (2012)

    Article  ADS  Google Scholar 

  48. Rudra, P., Biswas, R., Debnath, U.: Astrophys. Space Sci. 354, 2101 (2014)

    Article  Google Scholar 

  49. Kim, Yong- Wan, Park, Young-Jai: Phys. Lett. B 655, 172 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  50. Yoon, M., Ha, J., Kim, W.: Phys. Rev. D 76, 047501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  51. Nourcer, K.: Phys. Lett. B 646, 63 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  52. Anacieto, M.A., Brito, F.A., Passos, E., Santos, W.P.: Phys. Lett. B 737, 6 (2014)

    Article  ADS  Google Scholar 

  53. Anacieto, M.A., Brito, F.A., Passos, E.: Phys. Lett. B 749, 181 (2015)

    Article  ADS  Google Scholar 

  54. Anacieto, M.A., Brito, F.A., Passos, E., Mota-Silva, J.C.: Adv. High Energy Phys. 2016, 8465759 (2016)

    Google Scholar 

  55. Haldar, A., Biswas, R.: Mod. Phys. Lett. A 33–34, 1850200 (2018)

    Article  Google Scholar 

  56. Ali, A.F., Faizal, M., Khalil, M.M.: Nucl. Phys. B 894, 341 (2015)

    Article  ADS  Google Scholar 

  57. Medved, A.J.M., Vagenas, E.C.: Phys. Rev. D 70, 124021 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  58. Mandal, R., Bhattacharyya, S., Gangopadhyay, S.: arXiv:1805.07005 [gr-qc]

Download references

Acknowledgements

This research is supported by the project grant of Goverment of West Bengal, Department of Higher Education, Science and Technology and Biotechnology (File no:- \( ST/P/S \& T/16G-19/2017\)). AH wishes to thank the Department of Mathematics, the University of Burdwan for the research facilities provided during the work. RB thanks IUCAA, PUNE for Visiting Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritabrata Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The heat capacity of the black hole is given as:

$$\begin{aligned} C_h= & {} \left[ \pi \sqrt{m^2-4 q^2} \sqrt{1- \frac{\eta }{E_p^n} \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{-\frac{n}{d-3}}}\right] \nonumber \\&\left[ 2^{-\frac{d-4}{d-3}} \left( \left( 2^{\frac{d}{d-3}+1} (2 d-5) q^2 \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\bigg )^{\frac{3}{d-3}}\right. \right. \right. \right. \nonumber \\&+\,\left( \sqrt{m^2-4 q^2}+m\bigg )^{\frac{d}{d-3}} \left( (d-3) \sqrt{m^2-4 q^2}+(2-d) m\right) \right) \nonumber \\&\left( \sqrt{m^2-4 q^2}+m\right) ^{-\frac{2(d-1)}{d-3}} \nonumber \\&\quad \left( 1- \frac{\eta }{E_p^n} \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{-\frac{n}{d-3}}\right) \nonumber \\&+\,2^{\frac{n}{d-3}-1} \frac{1}{E_p^n} \left( m n \eta \left( \sqrt{m^2-4 q^2}+m\right) ^{-\frac{d+n-2}{d-3}}\right. \nonumber \\&\quad -\,4 n q^2 \eta \left( \sqrt{m^2-4 q^2}+m\right) ^{-\frac{2 d+n-5}{d-3}}\bigg )\bigg )\bigg ]^{-1}. \end{aligned}$$
(33)

The entropy of the black hole is expressed as:

$$\begin{aligned} S_h= & {} \frac{1}{4} \pi E_p^{-3 n} \left( r_h^{-7 d-n} \left( -\frac{8 q^8 r_h^{22} \eta E_p^{2 n}}{-7 d-n+22}+\frac{8 q^6 \eta r_h^{2 d+16} E_p^{2 n}}{-5 d-n+16}-\frac{8 q^4 \eta r_h^{4 d+10} E_p^{2 n}}{-3 d-n+10}\right. \right. \nonumber \\&+\,r_h^{2 (d+5)} \left( \frac{8 q^6 r_h^6 \eta E_p^{2 n}}{-5 d-n+16}+\frac{8 q^4 \eta r_h^{2 d} E_p^{2 n}}{3 d+n-10}\bigg )+\frac{8 \eta r_h^{8 d-2} E_p^{2 n}}{d-n-2}\bigg )\right. \nonumber \\&+\,r_h^{-7 d-2 n} \left( -\frac{6 q^8 r_h^{22} \eta ^2 E_p^n}{-7 d-2 n+22}+\frac{6 q^6 \eta ^2 r_h^{2 d+16} E_p^n}{-5 d-2 n+16}-\frac{6 q^4 \eta ^2 r_h^{4 d+10} E_p^n}{-3 d-2 n+10}+r_h^{2 (d+5)}\right. \nonumber \\&\left( \frac{6 q^6 r_h^6 \eta ^2 E_p^n}{-5 d-2 n+16}+\frac{6 q^4 \eta ^2 r_h^{2 d} E_p^n}{3 d+2 n-10}\right) \nonumber \\&+\,\frac{6 \eta ^2 r_h^{8 d-2} E_p^n}{d-2 n-2}\bigg )+r_h^{-7 d-3 n} \left( -\frac{5 q^8 r_h^{22} \eta ^3}{-7 d-3 n+22}+\frac{5 q^6 \eta ^3 r_h^{2 d+16}}{-5 d-3 n+16}\right. \nonumber \\&-\,\frac{5 q^4 \eta ^3 r_h^{4 d+10}}{10-3 (d+n)}+r_h^{2 (d+5)} \left( \frac{5 q^6 r_h^6 \eta ^3}{-5 d-3 n+16}+\frac{5 q^4 \eta ^3 r_h^{2 d}}{3 d+3 n-10}\right) +\frac{5 \eta ^3 r_h^{8 d-2}}{d-3 n-2}\bigg )\nonumber \\&+\,r_h^{-7 d} \left( -\frac{16 q^8 r_h^{20} E_p^{3 n}}{20-7 d}\right. \nonumber \\&+\,\frac{16 q^6 r_h^{2 d+14} E_p^{3 n}}{14-5 d}-\frac{16 q^4 r_h^{4 d+8} E_p^{3 n}}{8-3 d}+r_h^{6 d} \left( \frac{16 q^2 r_h^2 E_p^{3 n}}{2-d}-\frac{16 q^2 r_h^4 E_p^{3 n}}{4-d}\right) \nonumber \\&+\,r_h^{2 (d+5)} \left( \frac{16 q^6 r_h^4 E_p^{3 n}}{4-5 (d-2)}+\frac{16 q^4 r_h^{2 d-2} E_p^{3 n}}{3 d-8}\right) +\frac{16 r_h^{8 d-2} E_p^{3 n}}{d-2}\bigg )\bigg ). \end{aligned}$$
(34)

The quantum corrected temperature of the black hole is given by

$$\begin{aligned} T_G= & {} \frac{d-3}{4\pi }\sqrt{1- \frac{\eta }{E_p^n} \frac{1}{r_h^n}} \times \left\{ \frac{m}{\left( \frac{m}{2} + \frac{\sqrt{m^2-4q^2}}{2} \right) ^{\frac{d-2}{d-3}}} -\frac{2 q^2}{\left( \frac{m}{2} + \frac{\sqrt{m^2-4q^2}}{2} \right) ^{\frac{{2d-5}}{d-3}}}\right\} \nonumber \\&\left\{ 1+\frac{\alpha ^2 l_p^2}{\left( \frac{m}{2} + \frac{\sqrt{m^2-4q^2}}{2} \right) ^{\frac{2}{d-3}}}+\cdots \right\} ^{-1} \end{aligned}$$
(35)

The quantum corrected heat capacity of the black hole is given by

$$\begin{aligned} C_G= & {} \left( \pi \sqrt{m^2-4 q^2} \left( \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{\frac{2}{d-3}}+l_p^2 \alpha ^2\right) ^2 \right. \nonumber \\&\left. \sqrt{1- \frac{\eta }{E_p^n} \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{-\frac{n}{d-3}}}\right) \nonumber \\&\left[ \left( 2^{-\frac{4d+1}{d-3}}\right) \left( \sqrt{m^2-4 q^2}+m\right) ^{-\frac{2(d-2)}{d-3}} \left( n q^2 \frac{\eta }{E_p^n} \left( -2^{\frac{4 d+n}{d-3}}\right) \left( \sqrt{m^2-4 q^2}+m\right) ^{\frac{3-n}{d-3}}\right. \right. \nonumber \\&\left( \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{\frac{2}{d-3}}+l_p^2 \alpha ^2\right) \nonumber \\&+\,m n \frac{\eta }{E_p^n} \left( 2^{\frac{2 d+n+6}{d-3}} \right) \left( \sqrt{m^2-4 q^2}+m\right) ^{\frac{d-n}{d-3}} \left( \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{\frac{2}{d-3}}+l_p^2 \alpha ^2\right) \nonumber \\&+\,\left( 32^{\frac{d}{d-3}}\right) l_p^2 \alpha ^2 \left( m \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{\frac{d}{d-3}}\right. \nonumber \\&\left. -2 q^2 \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{\frac{3}{d-3}}\right) \left( 1-\frac{\eta }{E_p^n} \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{-\frac{n}{d-3}}\right) \nonumber \\&+\,8^{\frac{d+1}{d-3}} \left( \left( 2^{\frac{2d-3}{d-3}}\right) (2 d-5) q^2 \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{\frac{3}{d-3}}\right. \nonumber \\&\left. +\,\left( \sqrt{m^2-4 q^2}+m\right) ^{\frac{d}{d-3}} \left( (d-3) \sqrt{m^2-4 q^2}+(2-d) m\right) \right) \nonumber \\&\left( \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{\frac{2}{d-3}}+l_p^2 \alpha ^2\right) \left( 1-\frac{\eta }{E_p^n} \left( \frac{1}{2} \sqrt{m^2-4 q^2}+\frac{m}{2}\right) ^{-\frac{n}{d-3}}\right) \bigg )\bigg ]^{-1}.\nonumber \\ \end{aligned}$$
(36)

The quantum corrected entropy of the black hole is obtained as:

$$\begin{aligned} S_G= & {} \frac{1}{8} E_p^{-3 n} \left( \left( \left( \frac{32 q^6 r_h^{14} E_p^{3 n}}{14-5 d}+\frac{16 l_p^2 q^6 r_h^{12} \alpha ^2 E_p^{3 n}}{12-5 d}\right) r_h^{2 d}\right. \right. \nonumber \\&+\,\left( -\frac{32 q^4 r_h^8 E_p^{3 n}}{8-3 d}-\frac{16 l_p^2 q^4 r_h^6 \alpha ^2 E_p^{3 n}}{6-3 d}\right) r_h^{4 d}\nonumber \\&+\,\left( -\frac{32 q^2 r_h^4 E_p^{3 n}}{4-d}-\frac{16 l_p^2 q^2 \alpha ^2 E_p^{3 n}}{d}-\frac{16 q^2 r_h^2 \left( l_p^2 \alpha ^2-2\right) E_p^{3 n}}{2-d}\right) r_h^{6 d}\nonumber \\&+\,\left( \frac{16 l_p^2 \alpha ^2 E_p^{3 n}}{(d-4) r_h^4}+\frac{32 E_p^{3 n}}{(d-2) r_h^2}\right) r_h^{8 d} \nonumber \\&+\,\left( \left( \frac{16 l_p^2 q^4 \alpha ^2 E_p^{3 n}}{3 (d-2) r_h^4}+\frac{32 q^4 E_p^{3 n}}{(3 d-8) r_h^2}\right) r_h^{2 d}+\frac{32 q^6 S^{3 n} r_h^4}{4-5 (d-2)}+\frac{16 l_p^2 q^6 E_p^{3 n} \alpha ^2 r_h^2}{2-5 (d-2)}\right) r_h^{2 (d+5)}\nonumber \\&-\,\frac{32 q^8 E_p^{3 n} r_h^{20}}{20-7 d} -\frac{16 l_p^2 q^8 E_p^{3 n} \alpha ^2 r_h^{18}}{18-7 d}\bigg ) r_h^{-7 d}\nonumber \\&+\,\left( \left( \frac{10 q^6 \eta ^3 r_h^{16}}{-5 d-3 n+16}+\frac{5 l_p^2 q^6 \alpha ^2 \eta ^3 r_h^{14}}{-5 d-3 n+14}\right) r_h^{2 d}+\left( -\frac{10 q^4 \eta ^3 r_h^{10}}{10-3 (d+n)}-\frac{5 l_p^2 q^4 \alpha ^2 \eta ^3 r_h^8}{8-3 (d+n)}\right) r_h^{4 d}\right. \nonumber \\&+\,\left( \frac{5 l^2 \alpha ^2 \eta ^3}{(d-3 n-4) r_h^4}+\frac{10 \eta ^3}{(d-3 n-2) r_h^2}\right) r_h^{8 d}+\left( \left( \frac{5 l^2 \alpha ^2 \eta ^3 q^4}{(3 d+3 n-8) r_h^4}+\frac{10 \eta ^3 q^4}{(3 d+3 n-10) r_h^2}\right) r_h^{2 d}\right. \nonumber \\&+\,\frac{10 q^6 \eta ^3 r_h^4}{-5 d-3 n+16}+\frac{5 l_p^2 q^6 \alpha ^2 \eta ^3 r_h^2}{-5 d-3 n+14}\bigg ) r_h^{2 (d+6)}-\frac{10 q^8 \eta ^3 r_h^{22}}{-7 d-3 n+22}-\frac{5 l_p^2 q^8 \alpha ^2 \eta ^3 r_h^{20}}{-7 d-3 n+20}\bigg ) r_h^{-7 d-3 n} \nonumber \\&+\,\left( \left( \frac{12 q^6 r_h^{16} \eta ^2 E_p^n}{-5 d-2 n+16}+\frac{6 l_p^2 q^6 r_h^{14} \alpha ^2 \eta ^2 E_p^n}{-5 d-2 n+14}\right) r_h^{2 d}+\left( -\frac{12 q^4 r_h^{10} \eta ^2 E_p^n}{-3 d-2 n+10}-\frac{6 l_p^2 q^4 r_h^8 \alpha ^2 \eta ^2 E_p^n}{-3 d-2 n+8}\right) r_h^{4 d}\right. \nonumber \\&+\,\left( \frac{6 l_p^2 \alpha ^2 \eta ^2 E_p^n}{(d-2 n-4) r_h^4}+\frac{12 \eta ^2 E_p^n}{(d-2 n-2) r^2}\right) r^{8 d}+\left( \left( \frac{6 l_p^2 q^4 \alpha ^2 \eta ^2 E_p^n}{(3 d+2 n-8) r^4}+\frac{12 q^4 \eta ^2 E_p^n}{(3 d+2 n-10) r^2}\right) r^{2 d}\right. \nonumber \\&+\,\frac{12 q^6 E_p^n \eta ^2 r^4}{-5 d-2 n+16}+\frac{6 l_p^2 q^6 E_p^n \alpha ^2 \eta ^2 r^2}{-5 d-2 n+14}\bigg ) r^{2 (d+6)}-\frac{12 q^8 E_p^n \eta ^2 r^{22}}{-7 d-2 n+22}-\frac{6 l_p^2 q^8 E_p^n \alpha ^2 \eta ^2 r^{20}}{-7 d-2 n+20}\bigg ) r^{-7 d-2 n} \nonumber \\&+\,\left( \left( \frac{16 q^6 r^{16} \eta E_p^{2 n}}{-5 d-n+16}+\frac{8 l_p^2 q^6 r^{14} \alpha ^2 \eta E_p^{2 n}}{-5 d-n+14}\right) r^{2 d}+\left( -\frac{16 q^4 r^{10} \eta E_p^{2 n}}{-3 d-n+10}-\frac{8 l_p^2 q^4 r^8 \alpha ^2 \eta E_p^{2 n}}{-3 d-n+8}\right) r^{4 d}\right. \nonumber \\&+\,\left( \frac{8 l_p^2 \alpha ^2 \eta E_p^{2 n}}{(d-n-4) r^4}+\frac{16 \eta E_p^{2 n}}{(d-n-2) r^2}\right) r^{8 d}+\left( \left( \frac{8 l_p^2 q^4 \alpha ^2 \eta E_p^{2 n}}{(3 d+n-8) r^4}+\frac{16 q^4 \eta E_p^{2 n}}{(3 d+n-10) r^2}\right) r^{2 d}\right. \nonumber \\&+\,\frac{16 q^6 E_p^{2 n} \eta r^4}{-5 d-n+16}+\frac{8 l_p^2 q^6 E_p^{2 n} \alpha ^2 \eta r^2}{-5 d-n+14}\bigg ) r^{2 (d+6)}-\frac{16 q^8 E_p^{2 n} \eta r^{22}}{-7 d-n+22}-\frac{8 l_p^2 q^8 E_p^{2 n} \alpha ^2 \eta r^{20}}{-7 d-n+20}\bigg ) r^{-7 d-n}\bigg )\pi .\nonumber \\ \end{aligned}$$
(37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, A., Biswas, R. Thermodynamics of Reissner–Nordstr\(\ddot{\mathrm{o}}\)m black holes in higher dimensions: rainbow gravity background with general uncertainty principle. Gen Relativ Gravit 51, 72 (2019). https://doi.org/10.1007/s10714-019-2555-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2555-9

Keywords

Navigation