Skip to main content
Log in

Aharonov–Bohm rings in de Sitter expanding universe

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The \((1+3)\)-dimensional Dirac equation of the fermions moving in ideal Aharonov–Bohm rings in the de Sitter expanding universe is used for deriving the exact expressions of the general relativistic partial currents and corresponding energies. In the de Sitter geometry, these quantities depend on time but these are related each other just as in the non-relativistic case or in special relativity. A specific relativistic effect is the saturation of the partial currents for high values of the total angular momentum. The total relativistic persistent current at \(T=0\) takes over this property even though it is evolving in time because of the de Sitter expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Byers, N., Yang, C.N.: Phys. Rev. Lett. 7, 45 (1961)

    Article  ADS  Google Scholar 

  2. Imry, Y.: Introduction to Mesoscopic Physics. Oxford University Press, Oxford (2002)

    Google Scholar 

  3. Viefers, S., Koskinen, P., Singha Deo, P., Manninen, M.: Physica E 21, 1 (2004)

    Article  ADS  Google Scholar 

  4. Chen, B., Dai, X., Han, R.: Phys. Lett. A 302, 325 (2002)

    Article  ADS  Google Scholar 

  5. Szopa, M., Marganska, M., Zipper, E.: Phys. Lett. A 299, 593 (2002)

    Article  ADS  Google Scholar 

  6. Mailly, D., Chapellier, C., Benoit, A.: Phys. Rev. Lett. 70, 2020 (1993)

    Article  ADS  Google Scholar 

  7. Cheung, H.F., Gefen, Y., Riedel, E.K., Shih, W.H.: Phys. Rev. B 37, 6050 (1988)

    Article  ADS  Google Scholar 

  8. Papp, E., Micu, C., Aur, L., Racolta, D.: Physica E 36, 178 (2007)

    Article  ADS  Google Scholar 

  9. Carvalho Dias, F., Pimentel, I.R., Henkel, M.: Phys. Rev. B 73, 075109 (2006)

    Article  ADS  Google Scholar 

  10. Koskinen, M., Manninen, M., Mottelson, B., Reimann, S.M.: Phys. Rev. B 63, 205323 (2001)

    Article  ADS  Google Scholar 

  11. Rashba, E.I.: Sov. Phys. Solid State 2, 1109 (1960)

    Google Scholar 

  12. Moskalets, M.V.: Physica B 291, 350 (2000)

    Article  ADS  Google Scholar 

  13. Molnár, B., Peeters, F.M., Vasilopoulos, P.: Phys. Rev. B 69, 155335 (2004)

    Article  ADS  Google Scholar 

  14. Sheng, J.S., Chang, K.: Phys. Rev. B 74, 235315 (2006)

    Article  ADS  Google Scholar 

  15. Chen, T.W., Huang, C.M., Guo, G.J.: Phys. Rev. B 73, 235309 (2006)

    Article  ADS  Google Scholar 

  16. Zhang, X.W., Xia, J.B.: Phys. Rev. B 74, 075304 (2006)

    Article  ADS  Google Scholar 

  17. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  18. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  19. Yannouleas, C., Romanovsky, I., Landman, U.: Phys. Rev. B 89, 035432 (2014)

    Article  ADS  Google Scholar 

  20. Yannouleas, C., Romanovsky, I., Landman, U.: J. Phys. Chem. C 119, 11131 (2015)

    Article  Google Scholar 

  21. Beneventano, C.G., Santangelo, E.M.: J. Phys. A Math. Gen. 39, 7457 (2006)

    Article  ADS  Google Scholar 

  22. Gusynin, V.P., Sharapov, S.G.: Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  Google Scholar 

  23. Khveshchenko, D.V.: Phys. Rev. Lett. 87, 206401 (2001)

    Article  ADS  Google Scholar 

  24. Sharapov, S.G., Gusynin, V.P., Beck, H.: Phys. Rev. B 69, 075104 (2004)

    Article  ADS  Google Scholar 

  25. Vera, F., Schmidt, I.: Phys. Rev. D 42, 3591 (1990)

    Article  ADS  Google Scholar 

  26. Boz, M., Pak, N.K.: Phys. Rev. D 62, 045022 (2000)

    Article  ADS  Google Scholar 

  27. Albeed, A., Shikakhwa, M.S.: Int. J. Theor. Phys. 46, 405 (2007)

    Article  Google Scholar 

  28. De Francia, M., Kirsten, K.: Phys. Rev. D 64, 065021 (2001)

    Article  ADS  Google Scholar 

  29. Cotăescu, I.I., Papp, E.: J. Phys. Condens. Matter 19, 242206 (2007)

    Article  ADS  Google Scholar 

  30. Ghosh, S.: em Advances in Condensed Matter Physics Vol. 2013, Article ID 592402

  31. Cotăescu, I.I., Băltăţeanu, D.M., Cotăescu Jr., I.: Int. J. Mod. Phys. B 30, 1550245 (2016)

    Article  ADS  Google Scholar 

  32. Cotăescu, I.I., Băltăţeanu, D.M., Cotăescu Jr., I.: Int. J. Mod. Phys. B 30, 1650190 (2016)

    Article  ADS  Google Scholar 

  33. Cotăescu, I.I.: Phys. Rev. D 65, 084008 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Cotăescu, I.I., Crucean, C.: Phys. Rev. D 87, 044016 (2013)

    Article  ADS  Google Scholar 

  35. Thaller, B.: The Dirac Equation. Springer, Berlin (1992)

    Book  Google Scholar 

  36. Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  37. Gu, X.-Y., Ma, Z.-Q., Dong, S.-H.: Int. J. Mod. Phys. E 11, 335 (2002)

    Article  ADS  Google Scholar 

  38. Cotăescu, I.I.: GRG 43, 1639 (2011)

    Article  Google Scholar 

  39. Olver, F.: Asymptotics and Special Functions. A K Peters/CRC Press, New York (1997)

    Book  Google Scholar 

  40. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion I. Cotăescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A modified Bessel functions

A modified Bessel functions

According to the general properties of the modified Bessel functions, \(I_{\nu }(z)\) and \(K_{\nu }(z)=K_{-\nu }(z)\) [40], we deduce that those used here, \(K_{\nu _{\pm }}(z)\), with \(\nu _{\pm }=\frac{1}{2}\pm i \mu \) are related among themselves through

$$\begin{aligned} H^{(1,2)}_{\nu }(z)=\mp \frac{2i}{\pi }e^{\mp \frac{i}{2}\pi \nu }K_{\nu }(\mp iz), \quad z\in {\mathbb R}. \end{aligned}$$
(49)

The functions used here, \(K_{\nu _{\pm }}(z)\) with \(\nu _{\pm }=\frac{1}{2}\pm i \mu \) (\( \mu \in {\mathbb R}\)), are related among themselves through

$$\begin{aligned}{}[K_{\nu _{\pm }}(z)]^{*} =K_{\nu _{\mp }}(z^*),\quad \forall z \in {\mathbb C}, \end{aligned}$$
(50)

satisfy the equations

$$\begin{aligned} \left( \frac{d}{dz}+\frac{\nu _{\pm }}{z}\right) K_{\nu _{\pm }}(z)=-K_{\nu _{\mp }}(z), \end{aligned}$$
(51)

and the identities

$$\begin{aligned} K_{\nu _{\pm }}(i z)K_{\nu _{\mp }}(-i z)+ K_{\nu _{\pm }}(-i z)K_{\nu _{\mp }}(i z)=\frac{\pi }{| z|},\quad z\in {\mathbb R}. \end{aligned}$$
(52)

For \(|z|\rightarrow \infty \) these functions behave as [40]

$$\begin{aligned} I_{\nu }(z) \rightarrow \sqrt{\frac{\pi }{2z}}e^{z}, \quad K_{\nu }(z) \rightarrow K_{\frac{1}{2}}(z)=\sqrt{\frac{\pi }{2z}}e^{-z}, \end{aligned}$$
(53)

regardless the index \(\nu \).

The asymptotic approximation is rough since it looses the dependence on index of the functions \(K_{\nu }\). For this reason we propose the pre-asymptotic approximation,

$$\begin{aligned} K_{\frac{1}{2}\pm i\nu }(i\nu z)\sim \sqrt{\frac{\pi }{2\nu z}}\frac{\sqrt{\sqrt{1+z^2}\pm 1}}{(1+z^2)^{\frac{1}{4}}}\,e^{-i\nu \sqrt{1+z^2}+i\Theta (z)},\quad z,\nu \in {\mathbb R}^+, \end{aligned}$$
(54)

where \(\Theta (z)\) remains undefined. This is a numerically satisfactory approximation inspired by the uniform expansion of the modified Bessel functions which is proved only for real or pure imaginary indices [39, 40]. Moreover, assuming that \(\Theta (z) \rightarrow \frac{\pi }{4}\) for very large \(z'=\nu z\) we recover Eq. (53) with \(z\rightarrow i z'\) .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotăescu, I.I. Aharonov–Bohm rings in de Sitter expanding universe. Gen Relativ Gravit 51, 70 (2019). https://doi.org/10.1007/s10714-019-2553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2553-y

Keywords

Navigation