Skip to main content
Log in

Gravitational plane waves in Einstein-aether theory

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we systematically study spacetimes of gravitational plane waves in Einstein-aether theory. Due to the presence of the timelike aether vector field, now the problem in general becomes overdetermined. In particular, for the linearly polarized plane waves, there are five independent vacuum Einstein-aether field equations for three unknown functions. Therefore, solutions exist only for particular choices of the four free parameters \(c_{i}\)’s of the theory. We find that there exist eight cases, in two of which any form of gravitational plane waves can exist, similar to that in general relativity, while in the other six cases, gravitational plane waves exist only in particular forms. Beyond these eight cases, solutions either do not exist or are trivial (simply representing a Minkowski spacetime with a constant or dynamical aether field).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By rescaling the null coordinate \(u \rightarrow u' = \int { e^{-M(u)} du}\), without loss of the generality, one can always set \(M = 0\).

  2. Polarizations of GWs in weak-field approximations were also studied in [60] in the framework of Einstein-aether theory.

  3. It is interesting to note that in Einstein’s theory the field equations \(G_{\mu \nu } = 0\) yields only a single equation [47, 51],

    figure a

    for the two unknown functions U(u) and V(u). In this sense, the problem is underdetermined in Einstein’s theory. Thus, for any given gravitational wave V(u), we can always integrate the above equation to find U(u).

References

  1. Kostelecky, V.A., Russell, N.: Rev. Mod. Phys. 83, 11 (2011). (February 2016 Edition). arXiv:0801.0287

  2. Mattingly, D.: Living Rev. Relativ. 8, 5 (2005)

    Article  ADS  Google Scholar 

  3. Liberati, S.: Class. Quantum Gravit. 30, 133001 (2013)

    Article  ADS  Google Scholar 

  4. Carlip, S.: Quantum Gravity in 2+1 Dimensions. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  5. Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  6. Arkani-Hamed, N., Cheng, H.C., Luty, M.A., Mukohyama, S.: JHEP 0405, 074 (2004)

    Article  ADS  Google Scholar 

  7. Jacobson, T., Mattingly, D.: Phys. Rev. D 64, 024028 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. Jacobson T.: Proc. Sci. QG PH, 020 (2007). arXiv:0801.1547

  9. Hořava, P.: Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Wang, A.: Int. J. Mod. Phys. D 26, 1730014 (2017)

    Article  ADS  Google Scholar 

  11. Jacobson, T., Mattingly, D.: Phys. Rev. D 63, 041502 (2001)

    Article  ADS  Google Scholar 

  12. Jacobson, T., Mattingly, D.: Phys. Rev. D 70, 024003 (2004)

    Article  ADS  Google Scholar 

  13. Blas, D., Sibiryakov, S.: Phys. Rev. D 84, 124043 (2011)

    Article  ADS  Google Scholar 

  14. Barausse, E., Jacobson, T., Sotiriou, T.P.: Phys. Rev. D 83, 124043 (2011)

    Article  ADS  Google Scholar 

  15. Berglund, P., Bhattacharyya, J., Mattingly, D.: Phys. Rev. D 85, 124019 (2012)

    Article  ADS  Google Scholar 

  16. Cropp, B., Liberati, S., Visser, M.: Class. Quantum Gravity 30, 125001 (2013)

    Article  ADS  Google Scholar 

  17. Mohd, A.: (2013). arXiv:1309.0907

  18. Saravani, M., Afshordi, N., Mann, R.B.: Phys. Rev. D 89, 084029 (2014)

    Article  ADS  Google Scholar 

  19. Eling, C., Oz, Y.: JHEP 11, 067 (2014)

    Article  ADS  Google Scholar 

  20. Janiszewski, S., Karch, A., Robinson, B., Sommer, D.: JHEP 04, 163 (2014)

    Article  ADS  Google Scholar 

  21. Bhattacharyya, J., Mattingly, D.: Int. J. Mod. Phys. D 23, 1443005 (2014)

    Article  ADS  Google Scholar 

  22. Horava, P., Mohd, A., Melby-Thompson, C.M., Shawhan, P.: Gen. Relativ. Gravit. 46, 1720 (2014)

    Article  ADS  Google Scholar 

  23. Lin, K., Abdalla, E., Cai, R.-G., Wang, A.: Inter. J. Mod. Phys. D 23, 1443004 (2014)

  24. Shu, F.-W., Lin, K., Wang, A., Wu, Q.: JHEP 04, 056 (2014)

    Article  ADS  Google Scholar 

  25. Lin, K., Shu, F.-W., Wang, A., Wu, Q.: Phys. Rev. D 91, 044003 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lin, K., Goldoni, O., da Silva, M.F., Wang, A.: Phys. Rev. D 91, 024047 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ding, C., Wang, A., Wang, X.: Phys. Rev. D 92, 084055 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Michel, F., Parentani, R.: Phys. Rev. D 91, 124049 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Tian, M., Wang, X.-W., da Silva, M.F., Wang, A.: Gravitational collapse and formation of universal horizons (2015). arXiv:1501.04134

  30. Ding, C., Wang, A., Wang, X., Zhu, T.: Nucl. Phys. B913, 694 (2016)

    Article  ADS  Google Scholar 

  31. Ding, C., Liu, C., Wang, A., Jing, J.: Phys. Rev. D 94, 124034 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Liberati, S., Pacilio, C.: Phys. Rev. D 93, 084044 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Blas, D., Lim, E.: Int. J. Mod. Phys. D 23, 1443009 (2015)

    Article  ADS  Google Scholar 

  34. Misonoh, Y., Maeda, K.-I.: Phys. Rev. D 92, 084049 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lin, K., Satheeshkumar, V.H., Wang, A.: Phys. Rev. D 93, 124025 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Maciel, A.: Phys. Rev. D 93, 104013 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Lin, K., Mukohyama, S., Wang, A., Zhu, T.: Phys. Rev. D 95, 124053 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Ding, C.-K., Liu, C.-Q.: Sci. China PMA 60, 050411 (2017)

    Google Scholar 

  39. Pacillio, C., Liberati, S.: Phys. Rev. D 95, 124010 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. Liberati, S., Pacilio, C.: Phys. Rev. D 96, 104060 (2017)

    Article  ADS  Google Scholar 

  41. Ho, F,-H., J.Zhang, S., Liu, H.-S., Wang, A.: Smarr integral formula of D-dimensional stationary spacetimes in Einstein-Æther–Maxwell Theroy. Phys. Lett. B782, 723 (2018). arXiv:1712.09399

    Article  ADS  MathSciNet  Google Scholar 

  42. Berglund, P., Bhattacharyya, J., Mattingly, D.: Phys. Rev. Lett. 110, 071301 (2013)

    Article  ADS  Google Scholar 

  43. Abbott, B.P.: LIGO scientific collaboration and virgo collaboration. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  44. Abbott, B.P.: LIGO scientific collaboration and virgo collaboration. Phys. Rev. Lett. 116, 241103 (2016)

    Article  ADS  Google Scholar 

  45. Abbott, B.P.: LIGO scientific collaboration and virgo collaboration. Phys. Rev. Lett. 118, 221101 (2017)

    Article  ADS  Google Scholar 

  46. Abbott, B.: Virgo, LIGO scientific collaboration. Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  47. Wang, A.: Interacting, gravitational, electromagnetic, neutrino and other waves in the context of Einstein’s general theory of relativity. A dissertation submitted to Physics Department in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The University of Ioannina, Greece (1991)

  48. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, 2nd edn. Cambridge University Press, Cambridge (2009). (Chapters 24 & 25)

    MATH  Google Scholar 

  49. Griffiths, J.B.: Colliding Plane Waves in General Relativity. Dover Publications, Inc., New York (2016)

    MATH  Google Scholar 

  50. Wang, A.: On No-go theorem for slowly rotating black holes in Hořava-Lifshitz gravity (2012). arXiv:1212.1040

  51. Wang, A.: Gravitational Faraday rotation induced from interacting gravitational plane waves. Phys. Rev. D 44, 1120 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  52. Foster, B.Z.: Radiation Damping in Einstein-aether Theory (2006). arXiv:gr-qc/0602004v5

  53. Garfinkle, D., Eling, C., Jacobson, T.: Phys. Rev. D 76, 024003 (2007)

    Article  ADS  Google Scholar 

  54. Oost, J., Mukohyama, S., Wang, A.: Constraints on Einstein-aether theory after GW170817. Phys. Rev. D97, 124023 (2018). arXiv:1802.04303

  55. Carroll, S.M., Lim, E.A.: Phys. Rev. D 70, 123525 (2004)

    Article  ADS  Google Scholar 

  56. Abbott, B.P., et al.: Virgo, fermi-GBM, INTEGRAL, LIGO scientific collaboration, gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848, L13 (2017). arXiv:1710.05834

  57. Jacobson, T., Mattingly, D.: Phys. Rev. D 70, 024003 (2004)

    Article  ADS  Google Scholar 

  58. Baldwin, O.R., Jeffery, G.B.: The relativity theory of plane waves. Proc. R. Soc. A111, 95 (1926)

    Article  ADS  Google Scholar 

  59. Rosen, N.: Plane polarized waves in the general theory of relativity. Phys. Z. Sowjetunion 12, 366 (1937)

    MATH  Google Scholar 

  60. Hou, S.-Q., Gong, Y.-G.: Gravitational waves in Einstein-aether theory and generalized TeVeS theory after GW170817. Universe 4, 84 (2018)

    Article  ADS  Google Scholar 

  61. Wang, A.: The effect of polarization of colliding plane gravitational waves on focusing singularities. Inter. J. Mod. Phys. A6, 2273 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank G. Cleaver, Bao-Fei Li and Bahram Shakerin for valuable discussions. The work of A.W. was supported in part by the National Natural Science Foundation of China (NNSFC), Grant Nos. 11375153 and 11675145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzhong Wang.

Appendix A: The Einstein and aether tensors \(G_{\mu \nu }\) and \(T^{\ae }_{\mu \nu }\) and the aether vector

Appendix A: The Einstein and aether tensors \(G_{\mu \nu }\) and \(T^{\ae }_{\mu \nu }\) and the aether vector

For the spacetime of Eq. (3.1), the non-vanishing components of the Einstein tensor \(G_{\mu \nu }\) and \(T^{\ae }_{\mu \nu }\) are given by,

$$\begin{aligned} G_{00}= & {} \frac{1}{2}\Big (2U_{uu} - U_u^2 - V_u^2\Big ), \nonumber \\ T^{\ae }_{00}= & {} -\frac{1}{8}\Big [2c_2 U_{uu} + c_{13}\Big (V_u^2 + U_u^2\Big ) \nonumber \\&+ \,2\big (c_{13} + c_2 + 3c_{14}\big )\Big (h_{uu} - h_u U_u - h_u^2\Big )\Big ],\nonumber \\ T^{\ae }_{01}= & {} \frac{e^{-2h}}{4}\Big [c_2 \Big (U_{uu} - 2h_u U_u - U_u^2\Big ) \nonumber \\&+\, \big (c_2 + c_{13} - c_{14}\big )\Big (h_{uu} - h_u U_u - 2h_u^2\Big )\Big ],\nonumber \\ T^{\ae }_{11}= & {} -\frac{e^{-4h}}{8}\Big [2c_2 U_{uu} + c_{13}\Big (U_u^2 +V_u^2\Big ) \nonumber \\&+\, 2\big (c_2 + c_{13} - c_{14}\big )\Big (h_{uu} - h_u U_u - h_u^2\Big )\Big ],\nonumber \\ T^{\ae }_{22}= & {} \frac{e^{V-U-2h}}{8}\Big [c_{13}\Big (2V_{uu} - V_u^2 - 2 U_uV_u - 4 h_uV_u\Big ) \nonumber \\&-\, \big (c_{13} + 2c_2\big )\Big (2U_{uu} - U_u^2 - 4h_uU_u\Big )\nonumber \\&-\, 4 c_2h_{uu} + 2\big (3c_2 - c_{13} + c_{14}\big )h_u^2\Big ],\nonumber \\ T^{\ae }_{33}= & {} - \frac{e^{-(V+U+2h)}}{8}\Big [c_{13}\Big (2V_{uu} + V_u^2 - 2 U_uV_u - 4 h_uV_u\Big ) \nonumber \\&+\, \big (c_{13} + 2c_2\big )\Big (2U_{uu} - U_u^2 - 4h_uU_u\Big )\nonumber \\&+\, 4 c_2h_{uu} - 2\big (3c_2 - c_{13} + c_{14}\big )h_u^2\Big ], \end{aligned}$$
(A.1)

and , where

(A.2)

In the vacuum case, we have \(T^{m}_{\mu \nu } = 0\), and the Einstein-aether equations (2.7) reduce to

$$\begin{aligned} G_{\mu \nu } = T^{\ae }_{\mu \nu }, \end{aligned}$$
(A.3)

which yield five independent equations,

$$\begin{aligned}&2U_{uu} - \Big (V_u^2 + U_u^2\Big )+ 2c_{14}\Big (h_{uu} - h_u U_u - h_u^2\Big ) = 0, ~~~~~~~ \end{aligned}$$
(A.4)
$$\begin{aligned}&c_2 \Big (U_{uu} - 2h_u U_u - U_u^2\Big ) \nonumber \\&\quad +\, \big (c_2 + c_{13} - c_{14}\big )\Big (h_{uu} - h_u U_u - 2h_u^2\Big ) = 0, ~~~~~ \end{aligned}$$
(A.5)
$$\begin{aligned}&2c_2 U_{uu} + c_{13}\Big (U_u^2 +V_u^2\Big ) \nonumber \\&\quad +\, 2\big (c_2 + c_{13} - c_{14}\big )\Big (h_{uu} - h_u U_u - h_u^2\Big ) = 0, ~~~~~ \end{aligned}$$
(A.6)
$$\begin{aligned}&c_{13}\Big (2V_{uu} - V_u^2 - 2 U_uV_u - 4 h_uV_u\Big ) \nonumber \\&\quad -\, \big (c_{13} + 2c_2\big )\Big (2U_{uu} - U_u^2 - 4h_uU_u\Big )\nonumber \\&\quad -\, 4 c_2h_{uu} + 2\big (3c_2 - c_{13} + c_{14}\big )h_u^2 = 0, ~~~~~ \end{aligned}$$
(A.7)
$$\begin{aligned}&c_{13}\Big (2V_{uu} + V_u^2 - 2 U_uV_u - 4 h_uV_u\Big ) \nonumber \\&\quad +\, \big (c_{13} + 2c_2\big )\Big (2U_{uu} - U_u^2 - 4h_uU_u\Big )\nonumber \\&\quad +\, 4 c_2h_{uu} - 2\big (3c_2 - c_{13} + c_{14}\big )h_u^2 = 0 ~~~~ \end{aligned}$$
(A.8)

where in Eq. (A.4) we have used the fact that \(T^{\ae }_{00}\) can be expressed in terms of \(T^{\ae }_{11}\) which is equal to zero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oost, J., Bhattacharjee, M. & Wang, A. Gravitational plane waves in Einstein-aether theory. Gen Relativ Gravit 50, 124 (2018). https://doi.org/10.1007/s10714-018-2453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2453-6

Keywords

Navigation