Skip to main content
Log in

Shadow of a noncommutative geometry inspired Ayón Beato García black hole

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We introduce the noncommutative geometry inspired Ayón Beato García black hole metric and study various properties of this metric by which we try to probe the allowed values of the noncommutative parameter \(\vartheta \) under certain conditions. We then construct the shadow (apparent shape) cast by this black hole. We derive the corresponding photon orbits and explore the effects of noncommutative spacetime on them. We then study the effects of noncommutative parameter \(\vartheta \), smeared mass m(r), smeared charge q(r) on the silhouette of the shadow analytically and present the results graphically. We then discuss the deformation which arises in the shape of the shadow under various conditions. Finally, we introduce a plasma background and observe how the shadow behaves in this scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Synge, J.L.: Mon. Not. R. Astron. Soc. 131, 463 (1966)

    Article  ADS  Google Scholar 

  2. Luminet, J.P.: Astron. Astrophys. 75, 228 (1979)

    ADS  Google Scholar 

  3. Bardeen, J. M.: In: “Black Holes” (Les Astres Occulus), edited by C. Dewitt and B. S. Dewitt (Gordon and Breach, 1973), pp. 215–239

  4. Virbhadra, K.S., Ellis, G.F.R.: Phys. Rev. D 62, 084003 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Virbhadra, K.S.: Phys. Rev. D 79, 083004 (2008)

    Article  ADS  Google Scholar 

  6. Hioki, K., Maeda, K.I.: Phys. Rev. D 80, 024042 (2009)

    Article  ADS  Google Scholar 

  7. Zakharov, A.F., De Paolis, F., Ingrosso, G., Nucita, A.A.: Astron. Astrophys. 442, 795 (2005)

    Article  ADS  Google Scholar 

  8. Zakharov, A.F.: Phys. Rev. D 90, 062007 (2014)

    Article  ADS  Google Scholar 

  9. de Vries, A.: Class. Quantum Gravity 17, 123 (2000)

    Article  ADS  Google Scholar 

  10. Takahashi, R.: Publ. Astron. Soc. Jpn. 57, 273 (2005)

    Article  ADS  Google Scholar 

  11. Hioki, K., Miyamoto, U.: Phys. Rev. D 78, 044007 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. Abdujabbarov, A., Atmurotov, F., Kucukacka, Y., Ahmedov, B., Camci, U.: Astrophys. Space Sci. 344, 429 (2013)

    Article  ADS  Google Scholar 

  13. Grenzebach, A., Perlick, V., Lammerzahl, C.: Phys. Rev. D 89, 124004 (2014)

    Article  ADS  Google Scholar 

  14. Atamurotov, F., Andujabbarov, A., Ahmedov, B.: Phys. Rev. D 88, 064004 (2013)

    Article  ADS  Google Scholar 

  15. Amarilla, L., Eiroa, E.F.: Phys. Rev. D 85, 064019 (2012)

    Article  ADS  Google Scholar 

  16. Shipley, J.O., Dolan, S.R.: Class. Quantum Gravity 33, 175001 (2016)

    Article  ADS  Google Scholar 

  17. Amir, M., Ghosh, S.G.: Phys. Rev. D 94, 024054 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Papnoi, U., Atamurotov, F., Ghosh, S.G., Ahmedov, B.: Phys. Rev. D 90, 024073 (2014)

    Article  ADS  Google Scholar 

  19. The Event Horizon Telescope. www.eventhorizontelescope.org

  20. Doeleman, S.S., et al.: Nature 455, 78 (2008)

    Article  ADS  Google Scholar 

  21. Doeleman, S.S., et al.: Science 338, 355 (2012)

    Article  ADS  Google Scholar 

  22. Nicolini, P.: Int. J. Mod. Phys. A 24, 1229 (2009)

    Article  ADS  Google Scholar 

  23. Banerjee, R., Gangopadhyay, S., Modak, S.K.: Phys. Lett. B 686, 181–187 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gangopadhyay, S.: J. Phys. Conf. Ser. 405, 012014 (2012)

    Article  Google Scholar 

  25. Maggiore, M.: Phys. Lett. B 304, 65 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sharif, M., Iftikar, S.: Eur. Phys. J. C 76, 630 (2016)

    Article  ADS  Google Scholar 

  27. Ayón-Beato, E., García, A.: Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  28. Toshmatov, B., Ahmedov, B., Abdujabbarov, A., Stuchlik, Z.: Phys. Rev. D 89, 104017 (2014)

    Article  ADS  Google Scholar 

  29. Azreg-Aïnou, M.: Phys. Rev. D 90, 064041 (2014)

    Article  ADS  Google Scholar 

  30. Drake, Szekeres: Gen. Relativ. Gravit. 32, 445 (2000)

    Article  ADS  Google Scholar 

  31. Spallucci, E., Smailagic, A., Nicolini, P.: Phys. Lett. B 670, 449 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ahmadjon, A., Amir, M., Ahmedov, B., Ghosh, S.G.: Phys. Rev. D 93, 104004 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Raine, D., Thomas, E.: Black Holes An Introduction, 2nd edn. Imperial College Press, London (2005)

    Book  MATH  Google Scholar 

  34. Carter, B.: Phys. Rev. 174, 1559 (1968)

    Article  ADS  Google Scholar 

  35. Chandrasekhar, S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  36. Vazquez, A.E., Esteban, E.P.: Nuovo Cim. B 119, 489 (2004)

    ADS  Google Scholar 

  37. Synge, J.L.: Relativity: The General Theory. North Holland, Amsterdam (1960)

    MATH  Google Scholar 

  38. Rogers, A.: Mon. Not. R. Astron. Soc. 451, 4536 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

AS acknowledges the support by Council of Scientific and Industrial Research (CSIR, Govt. of India) for Junior Research Fellowship. SG acknowledges the support by DST-SERB under Start Up Research Grant (Young Scientist), File No. YSS/2014/000180. SG also acknowledges the support of IUCAA, Pune for the Visting Associateship Programme. The authors would like to thank the referees for very useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Saha.

Appendix

Appendix

In this “Appendix”, we present the explicit expressions for \(\xi \) and \(\eta \). These can be obtained by substituting Eq. 31 in Eqs. (28) and (29). The expressions read

$$\begin{aligned} \xi = \frac{\mathcal {X}}{a\mathcal {D}} \qquad \eta = \frac{\mathcal {G}}{\mathcal {D}} \end{aligned}$$
(52)

where

$$\begin{aligned} \mathcal {X}= & {} (r^2+a^2)\left( -\frac{2m^\prime (r)r^4}{(r^2+q(r)^2)^{3/2}} - \frac{4m(r)r^3}{(r^2+q(r)^2)^{3/2}} + \frac{6m(r)r^4}{(r^2+q(r)^2)^{5/2}}(r+q(r)q^\prime (r))\right. \nonumber \\&+\, \frac{2q(r)q^\prime (r)r^4}{(q(r)^2+r^2)^2} + \frac{2q(r)^2r^3}{(q(r)^2+r^2)^2} - (q(r)q^\prime (r)+r)\frac{4q(r)^2r^4}{(q(r)^2+r^2)^3}+2r-\frac{4m(r)r^3}{(r^2+q(r)^2)^\frac{3}{2}}\nonumber \\&\left. +\,\frac{2q(r)^2r^3}{(r^2+q(r)^2)^2}\right) -4r^3 +\frac{8m(r)r^5}{(r^2+q(r)^2)^\frac{3}{2}} -\frac{4q(r)^2r^5}{(r^2+q(r)^2)^2} \end{aligned}$$
(53)
$$\begin{aligned} \mathcal {D}= & {} -\frac{2m^\prime (r)r^4}{(r^2+q(r)^2)^{3/2}} - \frac{4m(r)r^3}{(r^2+q(r)^2)^{3/2}}+\, \frac{6m(r)r^4}{(r^2+q(r)^2)^{5/2}}(r+q(r)q^\prime (r)) + \frac{2q(r)q^\prime (r)r^4}{(q(r)^2+r^2)^2}\nonumber \\&+\, \frac{2q(r)^2r^3}{(q(r)^2+r^2)^2} - (q(r)q^\prime (r)+r)\frac{4q(r)^2r^4}{(q(r)^2+r^2)^3}+\,2r-\frac{4m(r)r^3}{(r^2+q(r)^2)^\frac{3}{2}} +\frac{2q(r)^2r^3}{(r^2+q(r)^2)^2} \nonumber \\ \end{aligned}$$
(54)
$$\begin{aligned} \mathcal {G}= & {} 4r^3+4a^2r+2a\xi \left( -\frac{2m^\prime (r)r^4}{(r^2+q(r)^2)^{3/2}} - \frac{4m(r)r^3}{(r^2+q(r)^2)^{3/2}}\right. +\frac{6m(r)r^4}{(r^2+q(r)^2)^{5/2}}(r+q(r)q^\prime (r)) \nonumber \\&+\, \frac{2q(r)q^\prime (r)r^4}{(q(r)^2+r^2)^2}+\frac{2q(r)^2r^3}{(q(r)^2+r^2)^2} - (q(r)q^\prime (r)+r)\frac{4q(r)^2r^4}{(q(r)^2+r^2)^3}+2r-\frac{4m(r)r^3}{(r^2+q(r)^2)^\frac{3}{2}}\nonumber \\&\left. +\,\frac{2q(r)^2r^3}{(r^2+q(r)^2)^2}-r\right) -(a^2+\xi ^2)\left( -\frac{2m^\prime (r)r^4}{(r^2+q(r)^2)^{3/2}} - \frac{4m(r)r^3}{(r^2+q(r)^2)^{3/2}} \right. \nonumber \\&+\, \frac{6m(r)r^4}{(r^2+q(r)^2)^{5/2}}(r+q(r)q^\prime (r)) + \frac{2q(r)q^\prime (r)r^4}{(q(r)^2+r^2)^2} + \frac{2q(r)^2r^3}{(q(r)^2+r^2)^2}\nonumber \\&\left. -\, (q(r)q^\prime (r)+r)\frac{4q(r)^2r^4}{(q(r)^2+r^2)^3}+2r-\frac{4m(r)r^3}{(r^2+q(r)^2)^\frac{3}{2}}+\frac{2q(r)^2r^3}{(r^2+q(r)^2)^2}\right) .\nonumber \\ \end{aligned}$$
(55)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Modumudi, S.M. & Gangopadhyay, S. Shadow of a noncommutative geometry inspired Ayón Beato García black hole. Gen Relativ Gravit 50, 103 (2018). https://doi.org/10.1007/s10714-018-2423-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2423-z

Keywords

Navigation