Skip to main content
Log in

Self-gravitating static non-critical black holes in 4D Einstein–Klein–Gordon system with nonminimal derivative coupling

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study static non-critical hairy black holes of four dimensional gravitational model with nonminimal derivative coupling and a scalar potential turned on. By taking an ansatz, namely, the first derivative of the scalar field is proportional to square root of a metric function, we reduce the Einstein field equation and the scalar field equation of motions into a single highly nonlinear differential equation. This setup implies that the hair is secondary-like since the scalar charge-like depends on the non-constant mass-like quantity in the asymptotic limit. Then, we show that near boundaries the solution is not the critical point of the scalar potential and the effective geometries become spaces of constant scalar curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amendola, L.: Cosmology with nonminimal derivative couplings. Phys. Lett. B 301, 175 (1993). [gr-qc/9302010]

    Article  ADS  MathSciNet  Google Scholar 

  2. Horndeski, G.W.: Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363 (1974)

    Article  MathSciNet  Google Scholar 

  3. Korolev, R.V., Sushkov, S.V.: Exact wormhole solutions with nonminimal kinetic coupling. Phys. Rev. D 90, 124025 (2014). [arXiv:1408.1235 [gr-qc]]

    Article  ADS  Google Scholar 

  4. Babichev, E., Charmousis, C., Lehsbel, A.: Black holes and stars in Horndeski theory. Class. Quantum Grav. 33, 154002 (2016). [arXiv:1604.06402 [gr-qc]] and references therein

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Volkov, M. S.: Hairy black holes in the XX-th and XXI-st centuries. arXiv:1601.08230 [gr-qc] and references therein

  6. Catà, O., Ibarra, A., Ingenhtt, S.: Dark matter decays from nonminimal coupling to gravity. Phys. Rev. Lett. 117(2), 021302 (2016). [arXiv:1603.03696 [hep-ph]]

    Article  ADS  Google Scholar 

  7. Kallosh, R., Linde, A., Ortin, T., Peet, A., Van Proeyen, A.: Supersymmetry as a cosmic censor. Phys. Rev. D 46, 5278 (1992). [arXiv:hep-th/9205027]

    Article  ADS  MathSciNet  Google Scholar 

  8. Gibbons, G., Kallosh, R., Kol, B.: Moduli, scalar charges, and the first law of black hole thermodynamics. Phys. Rev. Lett. 77, 4992 (1996). [arXiv:hep-th/9607108]

    Article  ADS  Google Scholar 

  9. Gunara, B.E., Zen, F.P., Suroso, A., Akbar, F.T., Arianto, : Some aspects of spherical symmetric extremal dyonic black holes in 4d N=1 supergravity. Int. J. Mod. Phys. A 28, 1350084 (2013). [arXiv:1012.0971 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Rinaldi, M.: Black holes with non-minimal derivative coupling. Phys. Rev. D 86, 084048 (2012). [arXiv:1208.0103 [gr-qc]]

    Article  ADS  Google Scholar 

  11. Kofinas, G., Papantonopoulos, E., Saridakis, E.N.: Self-gravitating spherically symmetric solutions in scalar-torsion theories. Phys. Rev. D 91, 104034 (2015). [arXiv:1501.00365 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  12. Yaqin, A., Gunara, B.E.: Comments on “Self-gravitating spherically symmetric solutions in scalar-torsion theories”. Phys. Rev. D 96, 028501 (2017). [arXiv:1706.04710 [gr-qc]]

    Article  ADS  Google Scholar 

  13. Joyce, D.: Compact Manifolds with Special Holonomy. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  14. Castor, D.: Komar integrals in higher (and lower) derivative gravity. Class. Quantum Grav. 25, 175007 (2008). [arXiv:0804.1832 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bartnik, R.: New definition of quasilocal mass. Phys. Rev. Lett. 62, 2346 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chrusciel, P. T.: Lectures on energy in general relativity. https://homepage.univie.ac.at/piotr.chrusciel/teaching/Energy/Energy.pdf and the references therein

  17. Vanzo, L.: Black holes with unusual topology. Phys. Rev. D 56, 6475 (1997). [gr-qc/9705004]

    Article  ADS  MathSciNet  Google Scholar 

  18. Kunduri, H.K., Lucietti, J., Reall, H.S.: Near-horizon symmetries of extremal black holes. Class. Quantum Grav. 24, 4169 (2007). [arXiv:0705.4214 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Sotiriou, T.P., Zhou, S.Y.: Black hole hair in generalized scalar-tensor gravity: an explicit example. Phys. Rev. D 90, 124063 (2014). [arXiv:1408.1698 [gr-qc]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Satriawan for correcting grammar and anonymous referee for suggestion of the paper. The work in this paper is supported by Riset KK ITB 2015-2017 and PDUPT Kemenristekdikti-ITB 2015-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobby Eka Gunara.

The next leading order

The next leading order

In this section, we consider the first order solutions in the asymptotic limit using a perturbative ansatz

$$\begin{aligned} Y = Y_0 + Y_1 , \end{aligned}$$
(A.1)

with \(|Y_0| \gg |Y_1(x)| \) showing that we have a regular solution up to the perturbative correction. Such a setup simplifies the master equation (3.11) into the following linear equation

$$\begin{aligned}&2 \tilde{\chi } \frac{d^2Y_1}{dx^2} + 3 \left( 4 \tilde{\chi } - \chi -\frac{2 \nu ^2 \chi ^3}{\chi - \tilde{\chi }} \right) \frac{dY_1}{dx} -18 \left( \chi - \tilde{\chi } \right) Y_1 \nonumber \\&\quad + 4 \tilde{\chi } \left[ \left( 2 + \eta \kappa ^2 \nu ^2 \right) \frac{\chi ^2 k}{\tilde{\chi } \kappa ^2 } -\eta \nu ^2 \chi k \right] e^{-2x} + 4 \tilde{\chi } \chi ^2 \eta ^2 \nu ^4 k^2 e^{-4x} = 0 , \qquad \end{aligned}$$
(A.2)

where we have simply set \(\varsigma = \varsigma _1 = 1\). Moreover, we also take \(e^{-mx} Y_1(x) \rightarrow 0\) and \(e^{-mx} dY_1/dx \rightarrow 0\) for \(m \ge 2\) around \( x \rightarrow +\infty \). A special class of solution of (A.2) has the form

$$\begin{aligned} Y_1= & {} C_1 S[\lambda _1] ~ e^{\lambda _1 x} + D_1 ~ e^{\lambda _2 x} - \frac{2 \left( \left( 2 + \eta \kappa ^2 \nu ^2 \right) \frac{\chi ^2 k}{\tilde{\chi } \kappa ^2 } -\eta \nu ^2 \chi k \right) }{(\lambda _1 +2) (\lambda _2 +2)} e^{-2x} \nonumber \\&- \frac{2 \chi ^2 \eta ^2 \nu ^4 k^2 }{(\lambda _1 +4) (\lambda _2 + 4)} e^{-4x} , \end{aligned}$$
(A.3)

where \(C_1, D_1 \in \mathbb {R}\) with

$$\begin{aligned} \lambda _{1, 2} = \frac{3}{4} \left( \frac{\chi }{\tilde{\chi }} - 4 + \frac{2 \varepsilon \nu ^2 \chi ^3}{\tilde{\chi } ( \chi - \tilde{\chi }) } \pm \left[ \left( \frac{\chi }{\tilde{\chi }} - 4 + \frac{2 \varepsilon \nu ^2 \chi ^3}{ \tilde{\chi } ( \chi - \tilde{\chi }) } \right) ^2 + 16 \left( \frac{\chi }{\tilde{\chi }} - 1 \right) \right] ^{1/2}\right) , \end{aligned}$$
(A.4)

and

$$\begin{aligned} S[\lambda _1] = \left\{ \begin{array}{ll} 0 &{} \text {if }\lambda _1 > 0\\ 1 &{} \text {if }\lambda _1 < 0 \end{array} \right. , \end{aligned}$$
(A.5)

The values of \(\lambda _1\) or \(\lambda _2\) should be negative, since \(\lim _{ x \rightarrow +\infty } Y_1(x) \rightarrow 0\), and \( -2< \lambda _{1, 2} < 0\). The solution (A.3) belongs to the following two cases. First, by simply taking \(0< \chi /\tilde{\chi } < 1\) and \(\eta > 0\), the analysis on (A.4) results \(\varepsilon = 1\) and

$$\begin{aligned} 2< \eta \kappa ^2 \nu ^2 < \frac{2}{3} (1 + 4\kappa ^2) ~ . \end{aligned}$$
(A.6)

In this case, both \(\lambda _1\) and \(\lambda _2\) are negative and we exclude the large \(\kappa \) limit case. Second, we simply take \( \chi /\tilde{\chi } > 1\) and \(\eta < 0\). Analyzing (A.4), we find \(\varepsilon = 1\) and

$$\begin{aligned} 2 - \frac{32}{9}\kappa ^2< \eta \kappa ^2 \nu ^2 < 0 ~ , \end{aligned}$$
(A.7)

and only \(\lambda _2\) is negative.

Solving the second equation in (3.12), we obtain the first order lapse function f

$$\begin{aligned} f (\rho ) = \hat{A}_0 Y_0^{\varsigma \tilde{\chi }/\chi } \rho ^{3\varsigma \varsigma _1 - 1 } \left( 1 + \frac{\varsigma \tilde{\chi } Y_1}{\chi Y_0} \right) e^{k\varsigma \eta \tilde{\chi } \nu ^2 / Y_0 \rho ^2} ~ , \end{aligned}$$
(A.8)

while the first equation gives us

$$\begin{aligned} \phi (\rho )= & {} \phi _0 + \int \frac{dx}{\sqrt{Y_0 + Y_1}} \nonumber \\\approx & {} \phi _0 + Y_0^{-1/2} ~ {\mathrm {ln}}\rho -\frac{1}{2} Y_0^{-3/2} \Bigg ( \frac{C_1}{\lambda _1} S[\lambda _1] ~ \rho ^{\lambda _1} + \frac{D_1}{\lambda _2} ~ \rho ^{\lambda _2}\nonumber \\&+ \frac{ \left( \left( 2 + \eta \kappa ^2 \nu ^2 \right) \frac{\chi ^2 k}{\tilde{\chi } \kappa ^2 } -\eta \nu ^2 \chi k \right) }{(\lambda _1 +2) (\lambda _2 +2)} \rho ^{-2} + \frac{ \chi ^2 \eta ^2 \nu ^4 k^2 }{2(\lambda _1 +4) (\lambda _2 + 4)} \rho ^{-4} \Bigg ) ~ . \qquad \end{aligned}$$
(A.9)

Equations (A.8) and (A.9) show that we have a different set of solutions compared to [19]. From the second equation in (3.9), we get the first order scalar potential

$$\begin{aligned} V= & {} -\frac{3 Y_0}{2 \chi }-\frac{\varepsilon \nu ^{2} }{2} -\frac{1}{2\chi } \left( C_1 (\lambda _1 +3) S[\lambda _1] ~ \rho ^{\lambda _1} + D_1 (\lambda _2 +3) ~ \rho ^{\lambda _2} \right) \nonumber \\&+ \left( \frac{ \left( 2 + \eta \kappa ^2 \nu ^2 \right) \frac{\chi ^2 k}{\tilde{\chi } \kappa ^2 } -\eta \nu ^2 \chi k }{ \chi (\lambda _1 +2) (\lambda _2 +2)} -\frac{k}{2 \kappa ^{2} } (2 + \eta \kappa ^{2} \nu ^{2}) \right) \rho ^{-2} \nonumber \\&+ \frac{ \chi ^2 \eta ^2 \nu ^4 k^2 }{ \chi (\lambda _1 +4) (\lambda _2 - 4)} \rho ^{-4} ~ . \end{aligned}$$
(A.10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunara, B.E., Yaqin, A. Self-gravitating static non-critical black holes in 4D Einstein–Klein–Gordon system with nonminimal derivative coupling. Gen Relativ Gravit 50, 72 (2018). https://doi.org/10.1007/s10714-018-2397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2397-x

Keywords

Navigation