Skip to main content
Log in

Tunneling method for Hawking radiation in the Nariai case

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We revisit the tunneling picture for the Hawking effect in light of the charged Nariai manifold, because this general relativistic solution, which displays two horizons, provides the bonus to allow the knowledge of exact solutions of the field equations. We first perform a revisitation of the tunneling ansatz in the framework of particle creation in external fields à la Nikishov, which corroborates the interpretation of the semiclassical emission rate \({\varGamma }_{emission}\) as the conditional probability rate for the creation of a couple of particles from the vacuum. Then, particle creation associated with the Hawking effect on the Nariai manifold is calculated in two ways. On the one hand, we apply the Hamilton–Jacobi formalism for tunneling, in the case of a charged scalar field on the given background. On the other hand, the knowledge of the exact solutions for the Klein–Gordon equations on Nariai manifold, and their analytic properties on the extended manifold, allow us a direct computation of the flux of particles leaving the horizon, and, as a consequence, we obtain a further corroboration of the semiclassical tunneling picture from the side of S-matrix formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For the sake of completeness, one should write \(\mathrm {Im} W = \frac{1}{2} \sum _{\omega ,l,m} \log (1+<n_{\omega ,l,m}>)\), which takes into account the full dependence on quantum numbers, and one realizes that the label \(\omega \) introduced in (10) is split, with some abuse of language, into \(\omega ,l,m\), where \(\omega \) is the energy, and lm are the usual quantum numbers for angular momentum.

  2. To be precise this is true only at finite, since they have different singularities at infinity.

  3. One may wonder if the flux of \(J_r\), which is meaningful in the external region \(U<0\), is still meaningful also in the black hole region \(U>0\). We observe that the current involves substantially Wronskian relations also in the inner region, and so is conserved also there, even if its physical interpretation is not perspicuous.

References

  1. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid 46, 206 (1976)]

  2. Hartle, J.B., Hawking, S.W.: Phys. Rev. D 13, 2188 (1976)

    Article  ADS  Google Scholar 

  3. Damour, T., Ruffini, R.: Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  4. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 024007 (1999). arXiv:gr-qc/9812028

    Article  ADS  MathSciNet  Google Scholar 

  5. Visser, M.: Int. J. Mod. Phys. D 12, 649 (2003). arXiv:hep-th/0106111

    Article  ADS  Google Scholar 

  6. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000). arXiv:hep-th/9907001

    Article  ADS  MathSciNet  Google Scholar 

  7. Akhmedov, E.T., Akhmedova, V., Singleton, D.: Phys. Lett. B 642, 124 (2006). arXiv:hep-th/0608098

    Article  ADS  MathSciNet  Google Scholar 

  8. Vanzo, L., Acquaviva, G., Di Criscienzo, R.: Class. Quant. Grav. 28, 183001 (2011). arXiv:1106.4153 [gr-qc]

    Article  ADS  Google Scholar 

  9. Parikh, M.K.: Int. J. Mod. Phys. D 13, 2351 (2004) [Gen. Relativ. Gravit. 36, 2419 (2004)]. arXiv:hep-th/0405160

  10. Moretti, V., Pinamonti, N.: Commun. Math. Phys. 309, 295 (2012). arXiv:1011.2994 [gr-qc]

    Article  ADS  Google Scholar 

  11. Chowdhury, B.D.: Pramana 70, 593 (2008) [Pramana 70, 3 (2008)]. doi:10.1007/s12043-008-0001-8. arXiv:hep-th/0605197

  12. Akhmedov, E.T., Akhmedova, V., Pilling, T., Singleton, D.: Int. J. Mod. Phys. A 22, 1705 (2007). arXiv:hep-th/0605137

    Article  ADS  Google Scholar 

  13. Belgiorno, F., Cacciatori, S.L., Dalla Piazza, F.: JHEP 0908, 028 (2009). arXiv:0906.1520 [gr-qc]

    Article  ADS  Google Scholar 

  14. Belgiorno, F., Cacciatori, S.L., Dalla Piazza, F.: Class. Quant. Grav. 27, 055011 (2010). arXiv:0909.1454 [gr-qc]

    Article  ADS  Google Scholar 

  15. Kofman, L.A., Sakhni, V., Starobinski, A.A.: Sov. Phys. JETP 58, 1090 (1983)

    Google Scholar 

  16. Massar, S., Parentani, R.: Nucl. Phys. B 575, 333 (2000). arXiv:gr-qc/9903027

    Article  ADS  Google Scholar 

  17. Akhmedov, E.T., Pilling, T., Singleton, D.: Int. J. Mod. Phys. D 17, 2453 (2008). arXiv:0805.2653 [gr-qc]

    Article  ADS  Google Scholar 

  18. Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B 666, 269 (2008). arXiv:0804.2289 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  19. Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B 673, 227 (2009). arXiv:0808.3413 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  20. Vanzo, L.: Europhys. Lett. 95, 20001 (2011). arXiv:1104.1569 [gr-qc]

    Article  ADS  Google Scholar 

  21. Shankaranarayanan, S., Padmanabhan, T., Srinivasan, K.: Class. Quant. Grav. 19, 2671 (2002). arXiv:gr-qc/0010042

    Article  ADS  Google Scholar 

  22. Shankaranarayanan, S., Srinivasan, K., Padmanabhan, T.: Mod. Phys. Lett. A 16, 571 (2001). arXiv:gr-qc/0007022

    Article  ADS  Google Scholar 

  23. Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006). arXiv:gr-qc/0603019

    Article  ADS  MathSciNet  Google Scholar 

  24. Sannan, S.: Gen. Relativ. Gravit. 20, 239 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  25. Nikishov, A.I., Eksp, Zh: Teor. Fiz. 57, 1210 (1969)

    Google Scholar 

  26. Damour, T.: Klein paradox and vacuum polarization. In: Ruffini, R. (ed.) Proceedings of first Marcel Grossmann Meeting on General Relativity (Trieste, 1975), p. 459. North-Holland, Amsterdam (1977)

    Google Scholar 

  27. Kim, S.P., Hwang, W.Y.P.: arXiv:1103.5264 [hep-th]

  28. Stephens, C.R.: Ann. Phys. 193, 255 (1989)

    Article  ADS  Google Scholar 

  29. Romans, L.J.: Nucl. Phys. B 383, 395 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  30. Mann, R.B., Ross, S.F.: Phys. Rev. D 52, 2254 (1995)

    Article  ADS  Google Scholar 

  31. Bousso, R.: Phys. Rev. D 60, 063503 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  32. Medved, A.J.M.: Phys. Rev. D 66, 124009 (2002). arXiv:hep-th/0207247

    Article  ADS  MathSciNet  Google Scholar 

  33. Parikh, M.K.: Phys. Lett. B 546, 189 (2002). arXiv:hep-th/0204107

    Article  ADS  MathSciNet  Google Scholar 

  34. Zhang, J.Y., Zhao, Z.: Nucl. Phys. B 725, 173 (2005)

    Article  ADS  Google Scholar 

  35. Kim, S.P.: JHEP 0711, 048 (2007). arXiv:0710.0915 [hep-th]

    Article  ADS  Google Scholar 

  36. Farmany, A., Dehghani, M., Setare, M.R., Mortazavi, S.S.: Phys. Lett. B 682, 114 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  37. Rahman, M.A., Hossain, M.I.: Phys. Lett. B 712, 1 (2012). arXiv:1205.1216 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  38. de Gill, A., Singleton, D., Akhmedova, V., Pilling, T.: Am. J. Phys. 78, 685 (2010). doi:10.1119/1.3308568. arXiv:1001.4833 [gr-qc]

    Article  ADS  Google Scholar 

  39. Gamelin, T.W.: Complex Analysis, Undergraduate Texts in Mathematics. Springer, Berlin (2001)

    Google Scholar 

  40. Bezerra, V.B., Vieira, H.S., Costa, A.A.: Class. Quant. Grav. 31, 045003 (2014). arXiv:1312.4823 [gr-qc]

    Article  ADS  Google Scholar 

  41. Vieira, H.S., Bezerra, V.B., Muniz, C.R.: Ann. Phys. 350, 14 (2014). arXiv:1401.5397 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Belgiorno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belgiorno, F., Cacciatori, S.L. & Dalla Piazza, F. Tunneling method for Hawking radiation in the Nariai case. Gen Relativ Gravit 49, 109 (2017). https://doi.org/10.1007/s10714-017-2275-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2275-y

Keywords

Navigation