Skip to main content
Log in

The boundary is mixed

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We show that in Oeckl’s boundary formalism the boundary vectors that do not have a tensor form represent, in a precise sense, statistical states. Therefore the formalism incorporates quantum statistical mechanics naturally. We formulate general-covariant quantum statistical mechanics in this language. We illustrate the formalism by showing how it accounts for the Unruh effect. We observe that the distinction between pure and mixed states weakens in the general covariant context, suggesting that local gravitational processes are naturally statistical without a sharp quantal versus probabilistic distinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Such a quantum equivalence principle could be a consequence of the dynamics (the Wheeler–deWitt equation) or hold only for states that are semiclassical in an appropriate sense. We do not investigate this question here. Notice that in a field theory on a fixed metric spacetime, a state lacking correlations across a boundary would yield infinite energy density, but presumably this is not so in quantum gravity, because of the Planck scale finiteness (or, equivalently, the finiteness of the Bekenstein entropy). We thank an anonymous referee for this interesting observation.

References

  1. Oeckl, R.: A ‘general boundary’ formulation for quantum mechanics and quantum gravity. Phys. Lett. B 575, 318–324 (2003). arXiv:hep-th/0306025

    Article  MathSciNet  MATH  Google Scholar 

  2. Oeckl, R.: General boundary quantum field theory: foundations and probability interpretation. Adv. Theor. Math. Phys. 12, 319–352 (2008). arXiv:hep-th/0509122

    Article  MathSciNet  MATH  Google Scholar 

  3. Rovelli, C.: Graviton propagator from background-independent quantum gravity. Phys. Rev. Lett. 97, 151301 (2006). arXiv:gr-qc/0508124

    Article  MathSciNet  MATH  Google Scholar 

  4. Bianchi, E., Modesto, L., Rovelli, C., Speziale, S.: Graviton propagator in loop quantum gravity. Class. Quant. Gravity 23, 6989–7028 (2006). arXiv:gr-qc/0604044

    Article  MathSciNet  MATH  Google Scholar 

  5. Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Trincherini, E., Villadoro, G.: A measure of de Sitter entropy and eternal inflation. JHEP 0705, 055 (2007). arXiv:0704.1814

    Article  MathSciNet  Google Scholar 

  6. Bianchi, E.: Talk at the 2012 Marcel Grossmann meeting (July, 2012)

  7. Oeckl, R.: A positive formalism for quantum theory in the general boundary formulation. arXiv:1212.5571

  8. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Rovelli, C.: Partial observables. Phys. Rev. D 65, 124013 (2002). arXiv:gr-qc/0110035

    Article  MathSciNet  Google Scholar 

  10. Rovelli, C.: Statistical mechanics of gravity and the thermodynamical origin of time. Class. Quant. Gravity 10, 1549–1566 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rovelli, C.: The statistical state of the universe. Class. Quant. Gravity 10, 1567 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Smolin, L.: On the nature of quantum fluctuations and their relation to gravitation and the principle of inertia. Class. Quant. Gravity 3, 347 (1986)

    Article  MathSciNet  Google Scholar 

  13. Smolin, L.: Quantum gravity and the statistical interpretation of quantum mechanics. Int. J. Theor. Phys. 25, 215–238 (1986)

    Article  MathSciNet  Google Scholar 

  14. Connes, A., Rovelli, C.: Von Neumann algebra automorphisms and time thermodynamics relation in general covariant quantum theories. Class. Quant. Gravity 11, 2899–2918 (1994). arXiv:gr-qc/9406019

  15. Rovelli, C.: General relativistic statistical mechanics. arXiv:1209.0065

  16. Unruh, W.: Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  Google Scholar 

  17. Colosi, D., Rätzel, D.: The Unruh effect in general boundary quantum field theory. SIGMA 9, 19 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Banisch, R., Hellman, F., Rätzel, D.: Vacuum states on timelike hypersurfaces in quantum field theory. arXiv:1205.1549

  19. Streater, R., Wightman, A.: PCT, Spin and Statistics, and All That. Princeton University Press, Princeton (2000)

    MATH  Google Scholar 

  20. Bisognano, J., Wichmann, E.: On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)

    Article  MathSciNet  Google Scholar 

  21. Wightman, A.: Quantum field theory in terms of vacuum expectation values. Phys. Rev. 101, 860 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gibbons, G., Hawking, S.: Action integrals and partition functions in quantum gravity. Phys. Rev. D 15(10), 2752–2756 (1977)

    Article  Google Scholar 

  23. Bianchi, E.: Entropy of Non-Extremal Black Holes from Loop Gravity. arXiv:1204.5122

  24. Haag, R.: Local Quantum Physics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  25. Martinetti, P., Rovelli, C.: Diamonds’s temperature: Unruh effect for bounded trajectories and thermal time hypothesis. Class. Quant. Gravity 20, 4919–4932 (2003). arXiv:gr-qc/0212074

    Article  MathSciNet  MATH  Google Scholar 

  26. Carlip, S., Teitelboim, C.: The off-shell black hole. Class. Quant. Gravity 12, 1699–1704 (1995). arXiv:gr-qc/9312002

    Article  MathSciNet  Google Scholar 

  27. Bianchi, E., Wieland, W.: Horizon energy as the boost boundary term in general relativity and loop gravity. arXiv:1205.5325

  28. Massar, S., Parentani, R.: How the change in horizon area drives black hole evaporation. Nucl. Phys. B575, 333–356 (2000). arXiv:gr-qc/9903027

    Article  MathSciNet  MATH  Google Scholar 

  29. Jacobson, T., Parentani, R.: Horizon entropy. Found. Phys. 33, 323–348 (2003). arXiv:gr-qc/0302099

    Article  MathSciNet  Google Scholar 

  30. Bianchi, E., Satz, A.: Mechanical laws of the Rindler horizon. Phys. Rev. D 87, 124031 (2013)

    Article  Google Scholar 

  31. Wall, A.C.: Proof of the generalized second law for rapidly evolving Rindler horizons. Phys. Rev. D 82, 124019 (2010)

    Article  Google Scholar 

  32. Wall, A.C.: Proof of the generalized second law for rapidly changing fields and arbitrary horizon slices. Phys. Rev. D 85, 104049 (2012)

    Article  Google Scholar 

  33. Bianchi, E.: Black hole entropy from graviton entanglement. arXiv:1211.0522

  34. Bianchi, E., Myers, R.C.: On the Architecture of Spacetime Geometry. arXiv:1212.5183

Download references

Acknowledgements

EB acknowledges support from a Banting Postdoctoral Fellowship from NSERC. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation. HMH acknowledges support from the National Science Foundation (NSF) International Research Fellowship Program (IRFP) under Grant No. OISE-1159218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal M. Haggard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, E., Haggard, H.M. & Rovelli, C. The boundary is mixed. Gen Relativ Gravit 49, 100 (2017). https://doi.org/10.1007/s10714-017-2263-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2263-2

Keywords

Navigation