Skip to main content
Log in

Buchdahl–Vaidya–Tikekar model for stellar interior in pure Lovelock gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the paper (Khugaev et al. in Phys Rev D94:064065. arXiv: 1603.07118, 2016), we have shown that for perfect fluid spheres the pressure isotropy equation for Buchdahl–Vaidya–Tikekar metric ansatz continues to have the same Gauss form in higher dimensions, and hence higher dimensional solutions could be obtained by redefining the space geometry characterizing Vaidya–Tikekar parameter K. In this paper we extend this analysis to pure Lovelock gravity; i.e. a \((2N+2)\)-dimensional solution with a given \(K_{2N+2}\) can be taken over to higher n-dimensional pure Lovelock solution with \(K_n=(K_{2N+2}-n+2N+2)/(n-2N-1)\) where N is degree of Lovelock action. This ansatz includes the uniform density Schwarzshild and the Finch–Skea models, and it is interesting that the two define the two ends of compactness, the former being the densest and while the latter rarest. All other models with this ansatz lie in between these two limiting distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Gravitational potential for Einstein goes as \(1/r^{n-3}\) while for pure Lovelock as \(1/r^{(n-2N-1)/N}\).

  2. This is because the two define the extremity limits and hence they both have to be exclusive.

  3. It has recently been generalized [23] for pure Lovelock gravity.

References

  1. Khugaev, A., Dadhich, N., Molina, A.: Phys. Rev D94, 064065 (2016). arXiv:1603.07118

    ADS  Google Scholar 

  2. Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  3. Buchdahl, H.A.: Class. Quantum Gravity 1, 301 (1984)

    Article  ADS  Google Scholar 

  4. Vaidya, P.C., Tikeka, R.: J. Astrophys. Astron. 3, 325 (1982)

    Article  ADS  Google Scholar 

  5. Dadhich, N.: Pramana 74, 875 (2010). arXiv:0802.3034

    Article  ADS  Google Scholar 

  6. Dadhich, N.: Eur. J. Phys. C78, 1 (2016). arxiv: 1506.08764

    Google Scholar 

  7. Dadhich, N., Hansraj, S., Chilambve, B.: Compact objects in pure Lovelock gravity. arxiv: 1607.07095

  8. Kastor, D.: Class. Quantum Gravity 29, 155007 (2012). arXiv:1202.5287

    Article  ADS  MathSciNet  Google Scholar 

  9. Camanho, X., Dadhich, N.: Eur. J. Phys. C76, 149 (2016)

    Article  ADS  Google Scholar 

  10. Dadhich, N., Ghosh, S., Jhingan, S.: Phys. Lett. 711, 196 (2012). arXiv:1202.4575

    Article  MathSciNet  Google Scholar 

  11. Dadhich, N., Ghosh, S., Jhingan, S.: Phys. Rev. D 98, 124040 (2013). arXiv:1308.4770

    Article  ADS  Google Scholar 

  12. Banados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. D 49, 975 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. Finch, M.R., Skea, J.E.F.: Class. Quantum Gravity 6, 467 (1989)

    Article  ADS  Google Scholar 

  14. Wheeler, J.T.: Nucl. Phys. B268, 737 (1986); B273, 732 (1986)

  15. Whitt, B.: Phys. Rev. D 38, 3000 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dadhich, N., Prabhu, K., Pons, J.: Gen. Relativ. Gravit. 45, 1131 (2013). arXiv:1201.4994

    Article  ADS  Google Scholar 

  17. Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  18. Boonserm, P., Visser, M., Weinfurten, S.: Phys. Rev. D 71, 124037 (2005). arXiv:grqc/0503007

    Article  ADS  MathSciNet  Google Scholar 

  19. Boonserm, P., Visser, M., Weinfurten, S.: Phys. Rev. D 76, 044024 (2007). arXiv:gr-qc/0607001

    Article  ADS  MathSciNet  Google Scholar 

  20. Boonserm, P., Visser, M.: Int. J. Mod. Phys. D 17, 135 (2008)

    Article  ADS  Google Scholar 

  21. Dadhich, N., Hansraj, S., Maharaj, S.: Phys. Rev. D 93, 044072 (2016). arxiv:1510.07490

    Article  ADS  MathSciNet  Google Scholar 

  22. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vol. 1. McGraw-Hill, New-York (1953)

    MATH  Google Scholar 

  23. Dadhich, N., Chakraborty, S.: On Buchdahl compactness limit for pure Lovelock static fluid star. arxiv:1606.01330

  24. Chakraborty, S., Dadhich, N.: Do we really live in four or higher dimensions. arxiv:1605.01961

Download references

Acknowledgements

AK and AM gratefully acknowledge IUCAA for the invitation and warm hospitality which facilitated this collaboration. Partial support for this work to AK was provided by Uzbekistan Foundation for Fundamental Research project F2-FA-F-116. Partial support for this work to AM was provided by FIS2015-65140-P (MINECO/FEDER). ND thanks Albert Einstein Institute, Golm and the University of Barcelona for visits that facilitated finalization of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Molina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, A., Dadhich, N. & Khugaev, A. Buchdahl–Vaidya–Tikekar model for stellar interior in pure Lovelock gravity. Gen Relativ Gravit 49, 96 (2017). https://doi.org/10.1007/s10714-017-2259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2259-y

Keywords

Navigation