Skip to main content
Log in

Repulsive gravity induced by a conformally coupled scalar field implies a bouncing radiation-dominated universe

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Novello, M.: Cosmic repulsion, CBPF Notas de Física 28 (1980), CBPF-NF-28/80. Phys. Lett. 90A, 347 (1982)

    Article  ADS  Google Scholar 

  2. Guth, A.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  3. Linde, A.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  4. Albrecht, A., Steinhardt, P.J.: Reheating an inflationary universe. Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  5. Linde, A.: Chaotic inflation. Phys. Lett. B 129, 177 (1983)

    Article  ADS  Google Scholar 

  6. Linde, A.: Contemp. Concepts Phys. 5, 1 (2005). [arXiv:hep-th/0503203]

    Google Scholar 

  7. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  8. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  9. Mortonson, M.J., Weinberg, D.H., White, M.: Dark energy: a short review, Particle Data Group 2014, Review of Particle Physics 26 [arXiv:1401.0046 [astro-ph.CO]]

  10. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). [arXiv:hep-th/0603057]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Frieman, J., Turner, M., Huterer, D.: Dark energy and the accelerating universe. Ann. Rev. Astron. Astrophys. 46, 385 (2008). [arXiv:0803.0982 [astro-ph]]

    Article  ADS  Google Scholar 

  12. Novello, M., Salim, J.M.: Non-linear photons in the universe. Phys. Rev. D 20, 377 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  13. Linde, A.: Gauge theory and the variability of the gravitational constant In the early universe. Pisma Zh. Eksp. Teor. Fiz. 30, 479 (1979)

    Google Scholar 

  14. Linde, A.: Gauge theory and the variability of the gravitational constant in the early universe. Phys. Lett. 93B, 394 (1980)

    Article  ADS  Google Scholar 

  15. Starobinsky, A.A.: Can the effective gravitational constant become negative. Sov. Astron. Lett. 7, 36 (1981)

    ADS  Google Scholar 

  16. Salopek, D.S., Bond, J.R., Bardeen, J.M.: Designing density fluctuation spectra in inflation. Phys. Rev. D 40, 1753 (1989)

    Article  ADS  Google Scholar 

  17. Fakir, R., Unruh, W.G.: Improvement on cosmological chaotic inflation through nonminimal coupling. Phys. Rev. D 41, 1783 (1990)

    Article  ADS  Google Scholar 

  18. Kaiser, D.I.: Primordial spectral indices from generalized Einstein theories. Phys. Rev. D 52, 4295 (1995). [arXiv:astro-ph/9408044]

    Article  ADS  Google Scholar 

  19. Komatsu, E., Futamase, T.: Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background. Phys. Rev. D 59, 064029 (1999). [arXiv:astro-ph/9901127]

    Article  ADS  Google Scholar 

  20. Bezrukov, F.L., Shaposhnikov, M.: The Standard Model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008). [arXiv:0710.3755 [hep-th]]

    Article  ADS  Google Scholar 

  21. Barvinsky, A.O., Kamenshchik, A.Y., Starobinsky, A.A.: Inflation scenario via the Standard Model Higgs boson and LHC. JCAP 0811, 021 (2008). [arXiv:0809.2104 [hep-ph]]

    Article  ADS  Google Scholar 

  22. Hohmann, M., Wohlfarth, M.N.R.: Multimetric extension of the PPN formalism: experimental consistency of repulsive gravity. Phys. Rev. D 82, 084028 (2010). [arXiv:1007.4945 [gr-qc]]

  23. Novello, M., Perez Bergliaffa, S.E.: Bouncing Cosmologies. Phys. Rept 463, 127 (2008). [arXiv:0802.1634 [astro-ph]]

  24. Callan Jr., C.G., Coleman, S., Jackiw, R.: A new improved energy-momentum tensor. Ann. Phys. 59, 42 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Council of Technological and Scientific Development (CNPq), the Brazilian Coordination for the Improvement Higher Education Personnel (CAPES), and the Research Support Foundation of the State of Rio de Janeiro (FAPERJ) for a grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Novello.

Appendix A: Bouncing model generated by a vector field non-minimally coupled to gravity

Appendix A: Bouncing model generated by a vector field non-minimally coupled to gravity

We include here a short review of the bouncing cosmological model proposed in [12] for an easy comparison with the model presented above. The Lagrangian describing a vector field non-minimally coupled to gravity employed in [12] is

$$\begin{aligned} L = \sqrt{-g}\left[ \frac{1}{\kappa }R + \beta RA_{\mu }A^{\mu } - \frac{1}{4}F_{\mu \nu }F^{\mu \nu } \right] , \end{aligned}$$
(18)

where \(\beta \) is a constant, and \(F_{\mu \nu } = \nabla _{\mu }A_{\nu } - \nabla _{\nu }A_{\mu }\). The field equation are

$$\begin{aligned} R_{\alpha \beta } - \frac{1}{2}Rg_{\alpha \beta } =&-\frac{1}{{\frac{1}{\kappa } + \beta A_{\mu }A^{\mu }}}\tau _{\alpha \beta }(A^{\mu }) , \end{aligned}$$
(19a)
$$\begin{aligned} \nabla _{\nu }F^{\mu \nu } + \beta A^{\mu }&= 0, \end{aligned}$$
(19b)

where \(\tau _{\alpha \beta }(A^{\mu })\) is the improved energy-momentum tensor of the vector field.

In a Friedmann geometry determined by the metric (14), making the choice \(A_{\mu } = A(t)\delta ^0_{\mu }\), and defining \(\Omega (t) = \frac{1}{\kappa } + \beta A^2(t)\), the set of field Eq. (19) assume the form

$$\begin{aligned}&3\frac{\ddot{a}}{a} = -\frac{\ddot{\Omega }}{\Omega }, \end{aligned}$$
(20a)
$$\begin{aligned}&\frac{\ddot{a}}{a} + 2\left( \frac{\dot{a}}{a} \right) ^2 + 2\frac{\epsilon }{a^2} = -\frac{\dot{a}}{a}\frac{\dot{\Omega }}{\Omega }, \end{aligned}$$
(20b)
$$\begin{aligned}&\Box \Omega = 0. \end{aligned}$$
(20c)

A particular solution for an open spatial section, \(\epsilon = -1\), furnishes a scale factor with the form

$$\begin{aligned} a(t) = \sqrt{ t^2 + a_0^2}, \end{aligned}$$
(21)

where \(a_0\) is the minimum value of the scale factor. Although this is the same solution (17 ) obtained for the scalar field, the two models differs in crucial points. First, the quantity \(\Omega (t)\), which is analogous to the effective gravitational constant of the model discussed in the main text, is not a constant, but a function of the cosmic time (although a model similar to the one considered in the main text would arise in the special case \(A_{\mu }A^{\mu } =\) constant). Second, here the non-minimally coupled vector field alone can be the source of the geometry, while in the bouncing model induced by the scalar field, in the absence of matter fields, and for the scalar field in the non-trivial (broken symmetry) ground state, the gravitational field equations reduce to the vacuum Einstein equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, V., Novello, M. Repulsive gravity induced by a conformally coupled scalar field implies a bouncing radiation-dominated universe. Gen Relativ Gravit 49, 55 (2017). https://doi.org/10.1007/s10714-017-2219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2219-6

Keywords

Navigation