Skip to main content
Log in

Novel ansatzes and scalar quantities in gravito-electromagnetism

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this work, we focus on the theory of gravito-electromagnetism (GEM)—the theory that describes the dynamics of the gravitational field in terms of quantities met in electromagnetism—and we propose two novel forms of metric perturbations. The first one is a generalisation of the traditional GEM ansatz, and succeeds in reproducing the whole set of Maxwell’s equations even for a dynamical vector potential \(\mathbf {A}\). The second form, the so-called alternative ansatz, goes beyond that leading to an expression for the Lorentz force that matches the one of electromagnetism and is free of additional terms even for a dynamical scalar potential \(\varPhi \). In the context of the linearised theory, we then search for scalar invariant quantities in analogy to electromagnetism. We define three novel, 3rd-rank gravitational tensors, and demonstrate that the last two can be employed to construct scalar quantities that succeed in giving results very similar to those found in electromagnetism. Finally, the gauge invariance of the linearised gravitational theory is studied, and shown to lead to the gauge invariance of the GEM fields \(\mathbf {E}\) and \(\mathbf {B}\) for a general configuration of the arbitrary vector involved in the coordinate transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout this work, we will use the \((+1,-1,-1,-1)\) signature for the Minkowski tensor \(\eta _{\mu \nu }\).

  2. From this point onwards and in order to simplify the analysis, we will set \(\lambda =0\); as is clear by looking at the components (B.1), all terms related to the \(\lambda \) potential will be suppressed by, at least, a factor of \({{\mathcal {O}}}(1/c^6)\) in the expression of the F invariant quantity (4.6) and thus will be negligible—by using the components (B.1), the interested reader may compute the full expression of the F invariant and check that indeed the presence of the scalar potential \(\lambda \) does not alter the results in any significant way.

  3. We should also mention that the quantities \(Q_{\alpha \mu \nu }, H_{\alpha \mu \nu }, F_{\alpha \mu \nu }\) and \(\varGamma ^{\alpha }_{\mu \nu }\)—although in general are not tensors—in the linear approximation and especially under Lorentz transformations behave as tensors.

  4. Since the presence of the scalar potential \(\lambda \) has again no significant effect on the derived results, for simplicity, we set again \(\lambda =0\).

  5. Here, we work at the lowest order and thus the energy-momentum tensor \(T_{\mu \nu }\) is taken to be independent of \(h_{\mu \nu }\).

  6. Note that, in the case of a general coordinate transformation, we should have taken into account how the derivatives \(\partial _\mu \) change as well, i.e. \(\partial _\mu \rightarrow \partial '_\mu = \partial _\mu + \epsilon ^\rho _{\;\;,\mu }\,\partial _\rho \). However, the latter term when acting on the perturbations \({\tilde{h}}_{\mu \nu }\) is of quadratic order and thus, in the linear approximation, it is ignored.

  7. Note that, according to Eq. (5.14), the absence of \(\lambda \) would be admissible, and no inconsistencies with the closure of the transformation rules would arise, if the condition \(\partial _i \epsilon ^i=0\) was demanded. However, as we saw earlier this leads to a more restrictive form of the vector \(\epsilon ^\mu \) than it is necessary. For this reason, above, we have followed instead the option of the introduction of the \(\lambda \) term that, while not affecting any of our results, helps to keep the space of the symmetry as large as possible.

References

  1. Thirring, H.: Phys. Z. 19, 204 (1918)

    Google Scholar 

  2. Lense, J., Thirring, H.: Phys. Z. 19, 156 (1918)

    Google Scholar 

  3. Mashhoon, B., Hehl, F.W., Theiss, D.S.: Gen. Relativ. Gravit. 16, 711 (1984)

    Article  ADS  Google Scholar 

  4. Kaluza, T.: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966 (1921)

    Google Scholar 

  5. Klein, O.: Z. Phys. 37, 895 (1926)

    Article  ADS  Google Scholar 

  6. Klein, O.: Surveys High Energ. Phys. 5, 241 (1986)

    Article  ADS  Google Scholar 

  7. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  8. Duff, M.: Int. J. Mod. Phys. A 11, 5623 (1996). arXiv:hep-th/9608117

    Article  ADS  Google Scholar 

  9. Ashtekar, A.: Phys. Rev. Lett. 57, 2244 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. Scott, J.W.C.: Can. J. Phys. 44, 1147 (1966)

    Article  ADS  Google Scholar 

  11. Scott, J.W.C.: Can. J. Phys. 44, 1639 (1966)

    Article  ADS  Google Scholar 

  12. Scott, J.W.C.: Nature 213, 767 (1967)

    Article  ADS  Google Scholar 

  13. Coster, H.G.L., Shepanski, J.R.: J. Phys. A 2, 257 (1969)

    Article  ADS  Google Scholar 

  14. Schwebel, S.L.: Int. J. Theor. Phys. 3, 315 (1970)

    Article  Google Scholar 

  15. Schwebel, S.L.: Int. J. Theor. Phys. 4, 87 (1971)

    Article  Google Scholar 

  16. Spieweck, F.: Astron. Astrophys. 12, 287 (1971)

    ADS  Google Scholar 

  17. Majernik, V.: Astrophys. Space Sci. 14, 265 (1971)

    Article  ADS  Google Scholar 

  18. Majernik, V.: Astrophys. Space Sci. 15, 375 (1972)

    Article  ADS  Google Scholar 

  19. Leiby Jr., C.C.: Astrophys. Space Sci. 17, 368 (1972)

    Article  ADS  Google Scholar 

  20. Brilluin, L.: Relativity Reexamined. Academic Press, New York (1970)

    Google Scholar 

  21. Whitmire, D.P.: Lett. Nuovo Cimento 7, 305 (1973)

    Article  Google Scholar 

  22. Weingarten, D.: J. Math. Phys. 18, 165 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kassandrov, V.V.: Grav. Cosmol. 1, 216 (1995). arXiv:gr-qc/0007027

    ADS  Google Scholar 

  24. Evans, M.W.: Found. Phys. Lett. 9, 397 (1996)

    Article  MathSciNet  Google Scholar 

  25. Evans, M.W.: Found. Phys. 26, 1243 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  26. Unzicker, A.: arXiv:gr-qc/9612061

  27. Dadhich, N.: Gen. Relativ. Gravit. 32, 1009 (2000). arXiv:gr-qc/9909067

    Article  ADS  MathSciNet  Google Scholar 

  28. Gonzalez-Martin, G.R.: arXiv:physics/0009042

  29. Anastasovski, P.K., et al.: Found. Phys. Lett. 16, 275 (2003)

    Article  MathSciNet  Google Scholar 

  30. Vollick, D.N.: Phys. Rev. D 69, 064030 (2004). arXiv:gr-qc/0309101

    Article  ADS  MathSciNet  Google Scholar 

  31. Torrome, R.G.: arXiv:0905.2060 [math-ph]

  32. Torrome, R.G.: arXiv:1207.3791 [math.DG]

  33. Agut, R.M.i.: arXiv:1012.4730 [gr-qc]

  34. Ramos, J.: “Gravitoelectromagnetism (GEM): a group theoretical approach”, PhD Thesis, Drexel University (2006). http://hdl.handle.net/1860/1123

  35. Bakopoulos, A.: Master Thesis, University of Ioannina (2016). arXiv:1610.08357 [gr-qc]

  36. Matte, A.: Can. J. Math. 5, 1 (1953)

    Article  MathSciNet  Google Scholar 

  37. Bel, L.: Compt. Rend. 247, 1094 (1958)

    MathSciNet  Google Scholar 

  38. Debever, R.: Bull. Soc. Math. Bel. 10, 112 (1958)

    MathSciNet  Google Scholar 

  39. Teyssandier, P.: Phys. Rev. D 16, 946 (1977)

    Article  ADS  Google Scholar 

  40. Teyssandier, P.: Phys. Rev. D 18, 1037 (1978)

    Article  ADS  Google Scholar 

  41. Damour, T., Soffel, M., Xu, Cm: Phys. Rev. D 43, 3272 (1991)

    ADS  Google Scholar 

  42. Damour, T., Soffel, M., Xu, Cm: Phys. Rev. D 45, 1017 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  43. Damour, T., Soffel, M., Xu, Cm: Phys. Rev. D 47, 3124 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  44. Jantzen, R., Carini, P., Bini, D.: Ann. Phys. (NY) 215, 1 (1992)

    Article  ADS  Google Scholar 

  45. Bonnor, W.B.: Class. Quant. Grav. 12, 499 (1995)

    Article  ADS  Google Scholar 

  46. Bonilla, M.A.G., Senovilla, J.M.M.: Phys. Rev. Lett. 11, 783 (1997)

    Article  ADS  Google Scholar 

  47. Maartens, R., Bassett, B.A.: Class. Quantum Grav. 15, 705 (1998)

    Article  ADS  Google Scholar 

  48. Clark, S.J., Tucker, R.W.: Class. Quantum Grav. 17, 4125 (2000)

    Article  ADS  Google Scholar 

  49. Senovilla, J.M.M.: Mod. Phys. Lett. A 15, 159 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  50. Senovilla, J.M.M.: Class. Quantum Grav. 17, 2799 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  51. Iorio, L., Lucchesi, D.M.: Class. Quantum Grav. 20, 2477 (2003)

    Article  ADS  Google Scholar 

  52. Harris, E.G.: Am. J. Phys. 59(5), 421 (1991)

    Article  ADS  Google Scholar 

  53. Ciufolini, I., Wheeler, J.A.: Gravitation and Inertia. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  54. Forward, R.L.: Am. J. Phys. 31, 166 (1963)

    Article  ADS  Google Scholar 

  55. Braginsky, V., Caves, C., Thorne, K.S.: Phys. Rev. D 15, 2047 (1977)

    Article  ADS  Google Scholar 

  56. Pascual-Sanchez, J.F.: Nuovo Cim. B 115, 725 (2000)

    ADS  MathSciNet  Google Scholar 

  57. Ruggiero, M.L., Tartaglia, A.: Nuovo Cimento B 117, 743 (2002)

    ADS  Google Scholar 

  58. Mashhoon, B.: Phys. Lett. A 173, 347 (1993)

    Article  ADS  Google Scholar 

  59. Mashhoon, B.: Class. Quant. Grav. 17, 2399 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  60. Mashhoon, B.: Int. J. Mod. Phys. D 14, 2025 (2005). arXiv:gr-qc/0311030

    Article  ADS  MathSciNet  Google Scholar 

  61. Mashhoon, B., Gronwald, F., Lichtenegger, H.I.M.: Lect. Notes Phys. 562, 83 (2001)

    Article  ADS  Google Scholar 

  62. Kopeikin, S., Mashhoon, B.: Phys. Rev. D 65, 064025 (2002)

    Article  ADS  Google Scholar 

  63. Filipe Costa, L., Herdeiro, C.A.R.: Phys. Rev. D 78, 024021 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  64. Filipe Costa, L., Herdeiro, C.A.R.: arXiv:0912.2146 [gr-qc]

  65. Costa, L.F.O., Natario, J.: Gen. Relativ. Gravit. 46, 1792 (2014)

    Article  ADS  Google Scholar 

  66. Costa, L.F.O., Natario, J., Zilhao, M.: Phys. Rev. D 93(10), 104006 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  67. Costa, L.F.O., Wylleman, L., Natario, J.: arXiv:1603.03143 [gr-qc]

  68. Ramos, J., Montigny, M., Khanna, F.C.: Gen. Relativ. Gravit. 42, 2403 (2010)

    Article  ADS  Google Scholar 

  69. Bakopoulos, A., Kanti, P.: Gen. Relativ. Gravit. 46, 1742 (2014)

    Article  ADS  Google Scholar 

  70. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Butterworth-Heinemann Editions, Oxford (2003)

    MATH  Google Scholar 

  71. Carroll, S.M.: An Introduction to General Relativity: Spacetime and Geometry. Addison Wesley, San Francisco (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kanti.

Appendices

Appendix A: Components of the Christoffel symbols

Here, we present the components of the Christoffel symbols for both metric perturbations ansatzes that are necessary for the derivation of the Lorentz equation in each case.

Employing the expression of the Christoffel symbols (3.7) in the linear approximation and of the initial perturbations \(h_{\mu \nu }\) from the line-element (3.10) for the case of the generalised traditional ansatz, we find the following components

$$\begin{aligned} \varGamma ^i_{00}= & {} \frac{1}{c^2}\,\partial _i \varPhi - \frac{3}{2c^4}\,\partial _i \lambda +\frac{2}{c^3}\,\partial _t A^i\,,\nonumber \\ \varGamma ^i_{0j}= & {} \frac{1}{c^2}\,F_{ij} - \frac{1}{c^3}\,\delta ^i_j \left( \partial _t \varPhi +\frac{1}{2c^2}\,\partial _t \lambda \right) + \frac{1}{c^5}\,\partial _t d^i_{\,\, j}\,, \nonumber \\ \varGamma ^i_{kj}= & {} -\frac{1}{c^2}\left( \delta ^i_j \,\partial _k \varPhi + \delta ^i_k \,\partial _j \varPhi -\delta _{kj} \,\partial _i \varPhi \right) \nonumber \\&-\frac{1}{2c^4}\left( \delta ^i_j \,\partial _k \lambda + \delta ^i_k \,\partial _j \lambda -\delta _{kj} \,\partial _i \lambda \right) + \frac{1}{c^4}\left( \partial _k d^i_{\,\, j} + \partial _j d^i_{\,\, k}- \partial ^i d_{kj} \right) . \nonumber \\ \end{aligned}$$
(A.1)

Note that above we have used the definition \(F_{ij} \equiv \partial _i A_j -\partial _j A_i\).

In the case of the alternative ansatz for the metric perturbations, the original perturbations \(h_{\mu \nu }\) may be deduced from the line-element (3.15). Then, the Christoffel symbols are found to be

$$\begin{aligned} \varGamma ^i_{00}= & {} \frac{(1+3\gamma )}{4c^2}\,\partial _i \varPhi +\frac{1}{c^3}\,\partial _t A^i\,, \qquad \varGamma ^i_{0j} = \frac{1}{2c^2}\,F_{ij} - \frac{(1-3\gamma )}{4c^3}\,\delta ^i_j \,\partial _t \varPhi + \frac{1}{2c}\,\partial _t {\tilde{h}}^i_{\,\, j}\,, \nonumber \\ \varGamma ^i_{kj}= & {} -\frac{(1-3\gamma )}{4c^2}\left( \delta ^i_j \,\partial _k \varPhi + \delta ^i_k \,\partial _j \varPhi -\delta _{kj} \,\partial _i \varPhi \right) + \frac{1}{2}\left( \partial _k {\tilde{h}}^i_{\,\, j} + \partial _j {\tilde{h}}^i_{\,\, k}- \partial ^i {\tilde{h}}_{kj} \right) . \end{aligned}$$
(A.2)

Appendix B: Components of the novel gravitational tensors

By using the components of the perturbations \({\tilde{h}}_{\mu \nu }\), as these appear in the generalised traditional ansatz (3.3), we find the following explicit forms for the components of the new tensor \(F_{\alpha \mu \nu }\), defined in Eq. (4.5):

$$\begin{aligned} F_{000}= & {} -\frac{2}{c^2}\,\partial _i A^i, \,\, F_{i00}=\frac{4 E^i}{c^2} - \frac{2}{c^4} \left( \partial _i \lambda + \partial ^j d_{ij} \right) , \,\,\nonumber \\ F_{ij0}= & {} - \frac{2}{c^2} F_{ij} + \frac{2}{c^5}\partial _t \left( \lambda \,\eta _{ij} +d_{ij} \right) ,\; F_{00i}=\frac{4}{c^2} \partial _i \varPhi , \nonumber \\ F_{0ij}= & {} \frac{2}{c^2} \left[ (\partial _i A_j + \partial _j A_i) - \eta _{ij} \left( \frac{2}{c}\,\partial _t \varPhi + \partial _k A^k \right) \right] - \frac{2}{c^5} \partial _t (\lambda \, \eta _{ij} +d_{ij}), \nonumber \\ F_{ijk}= & {} \frac{2}{c^4} \bigl [ \partial _j (\lambda \eta _{ik} + d_{ik}) - (j \leftrightarrow k) - (j \leftrightarrow i) \bigr ]\nonumber \\&-\frac{2 \eta _{jk}}{c^3} \left[ \partial _t A_i +\frac{1}{c} \,\partial ^l (\lambda \eta _{il} + d_{il}) \right] . \end{aligned}$$
(B.1)

Similarly, employing the components of \({\tilde{h}}_{\mu \nu }\) of the alternative ansatz (3.13), we find the results

$$\begin{aligned} F_{000}= & {} -\frac{1}{c^2} \partial _i A^i, \qquad F_{i00}= \frac{1}{c^3} \partial _t A_i - \frac{1}{c^4} \partial ^j d_{ij}, \qquad F_{00i} =\frac{1}{c^2}\partial _i \varPhi , \nonumber \\ F_{ij0}= & {} -\frac{F_{ij}}{c^2} - \frac{\partial _t \varPhi }{c^3} \eta _{ij} +\frac{1}{c^5} \partial _t d_{ij}, \nonumber \\ F_{0ij}= & {} \frac{1}{c^2} \left[ ( \partial _iA_j +\partial _jA_i) - \eta _{ij} \partial _k A^k\right] -\frac{\partial _t d_{ij}}{c^5}, \nonumber \\ F_{ijk}= & {} -\frac{1}{c^2} \left( \eta _{ij}\,\partial _k \varPhi +\eta _{ik}\,\partial _j \varPhi -2\eta _{jk}\,\partial _i \varPhi \right) - \frac{1}{c^3}\,\eta _{jk}\,\partial _t A_i -\frac{1}{c^4}\,\eta _{jk}\,\partial ^l d_{il} \nonumber \\&+ \frac{1}{c^4}\,(\partial _j d_{ik} + \partial _k d_{ij} -\partial _i d_{jk}). \end{aligned}$$
(B.2)

We now move to the components of the gravitational tensors \(Q_{\alpha \mu \nu }\) and \(H_{\alpha \mu \nu }\) defined in Eqs. (4.11). For the generalised ansatz (3.3) (where we have set for simplicity \(\lambda =0\)), we find the following components of the \(Q_{\alpha \mu \nu }\)

$$\begin{aligned} Q_{000}= & {} \frac{6}{c^3}\,\partial _t \varPhi , \qquad Q_{i00}= \frac{4}{c^3}\,\partial _t A_i - \frac{2}{c^2}\,\partial _i \varPhi , \qquad Q_{00i} =\frac{2}{c^2}\,\partial _i \varPhi , \nonumber \\ Q_{0i0}= & {} \frac{6}{c^2}\,\partial _i \varPhi , \qquad Q_{ij0} = -\frac{2}{c^2}F_{ij} - \frac{2}{c^3}\,\partial _t \varPhi \,\eta _{ij} +\frac{2}{c^5}\,\partial _t d_{ij}, \nonumber \\ Q_{0ij}= & {} \frac{2}{c^2} ( \partial _iA_j +\partial _jA_i) + \frac{2 \partial _t \varPhi }{c^3} \eta _{ij} -\frac{2 \partial _t d_{ij}}{c^5}, \nonumber \\ Q_{i0j}= & {} -\frac{2 F_{ij}}{c^2} + \frac{2 \partial _t \varPhi \,\eta _{ij}}{c^3} +\frac{2 \partial _t d_{ij}}{c^5}, \nonumber \\ Q_{ijk}= & {} -\frac{2}{c^2} \left( \eta _{ij}\,\partial _k \varPhi -\eta _{ik}\,\partial _j \varPhi -\eta _{jk}\,\partial _i \varPhi \right) + \frac{2}{c^4}\,(\partial _j d_{ik} + \partial _k d_{ij} -\partial _i d_{jk}).\nonumber \\ \end{aligned}$$
(B.3)

and \(H_{\alpha \mu \nu }\) tensors

$$\begin{aligned} H_{000}= & {} \frac{6}{c^3}\,\partial _t \varPhi , \qquad H_{i00}= \frac{2}{c^2}\,\partial _i \varPhi , \qquad H_{00i} =\frac{6}{c^2}\,\partial _i \varPhi , \nonumber \\ H_{0i0}= & {} \frac{4}{c^3}\,\partial _t A_i -\frac{2}{c^2}\,\partial _i \varPhi , \qquad H_{ij0} = \frac{2}{c^2}F_{ij} + \frac{2}{c^3}\,\partial _t \varPhi \,\eta _{ij} +\frac{2}{c^5}\,\partial _t d_{ij}, \nonumber \\ H_{0ij}= & {} -\frac{2 F_{ij}}{c^2} - \frac{2 \partial _t \varPhi }{c^3} \eta _{ij} +\frac{2 \partial _t d_{ij}}{c^5}, \nonumber \\ H_{i0j}= & {} \frac{2}{c^2} ( \partial _iA_j +\partial _jA_i) + \frac{2 \partial _t \varPhi }{c^3} \eta _{ij} -\frac{2 \partial _t d_{ij}}{c^5} \nonumber \\ H_{ijk}= & {} \frac{2}{c^2} \left( \eta _{ij}\,\partial _k \varPhi +\eta _{ik}\,\partial _j \varPhi -\eta _{jk}\,\partial _i \varPhi \right) + \frac{2}{c^4}\,(\partial _j d_{ik} + \partial _k d_{ij} -\partial _i d_{jk}).\nonumber \\ \end{aligned}$$
(B.4)

We follow a similar analysis for the case of the alternative ansatz (3.13) (with \(\gamma =1\)). Then, we find the following components for the \(Q_{\alpha \mu \nu }\)

$$\begin{aligned} Q_{000}= & {} 0=Q_{0i0}, \qquad Q_{i00}= \frac{2}{c^3}\,\partial _t A_i - \frac{2}{c^2}\,\partial _i \varPhi , \qquad Q_{00i} =\frac{2}{c^2}\,\partial _i \varPhi , \nonumber \\ Q_{ij0}= & {} -\frac{1}{c^2}F_{ij} +\frac{1}{c^5}\,\partial _t d_{ij} \qquad Q_{0ij} = \frac{1}{c^2}\left( \partial _iA_j +\partial _jA_i \right) -\frac{1}{c^5}\,\partial _t d_{ij}, \nonumber \\ Q_{i0j}= & {} -\frac{F_{ij}}{c^2} - \frac{2 \partial _t \varPhi }{c^3} \eta _{ij} +\frac{\partial _t d_{ij}}{c^5}, \nonumber \\ Q_{ijk}= & {} -\frac{2 \partial _j \varPhi }{c^2}\eta _{ik} + \frac{1}{c^4} (\partial _j d_{ik} + \partial _k d_{ij} -\partial _i d_{jk}). \end{aligned}$$
(B.5)

and \(H_{\alpha \mu \nu }\) tensors

$$\begin{aligned} H_{000}= & {} 0=H_{00i}, \qquad H_{i00}=\frac{2}{c^2}\,\partial _i \varPhi , \qquad H_{0i0} = \frac{2}{c^3}\,\partial _t A_i -\frac{2}{c^2}\,\partial _i \varPhi , \nonumber \\ H_{ij0}= & {} \frac{1}{c^2}\,F_{ij} - \frac{2}{c^3}\,\partial _t \varPhi \,\eta _{ij} +\frac{1}{c^5}\,\partial _t d_{ij}, \qquad H_{0ij} =-\frac{1}{c^2}\,F_{ij} +\frac{1}{c^5}\,\partial _t d_{ij}, \nonumber \\ H_{i0j}= & {} \frac{1}{c^2} ( \partial _iA_j +\partial _jA_i) -\frac{\partial _t d_{ij}}{c^5}\,,\nonumber \\ H_{ijk}= & {} -\frac{2 \partial _k \varPhi }{c^2} \eta _{ij} + \frac{1}{c^4}\,(\partial _k d_{ij} + \partial _i d_{jk} -\partial _j d_{ik}). \end{aligned}$$
(B.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakopoulos, A., Kanti, P. Novel ansatzes and scalar quantities in gravito-electromagnetism. Gen Relativ Gravit 49, 44 (2017). https://doi.org/10.1007/s10714-017-2207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2207-x

Keywords

Navigation