Skip to main content
Log in

A statistical representation of the cosmological constant from finite size effects at the apparent horizon

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper we present a statistical description of the cosmological constant in terms of massless bosons (gravitons). To this purpose, we use our recent results implying a non vanishing temperature \({T_{\Lambda }}\) for the cosmological constant. In particular, we found that a non vanishing \(T_{\Lambda }\) allows us to depict the cosmological constant \(\Lambda \) as composed of elementary oscillations of massless bosons of energy \(\hbar \omega \) by means of the Bose–Einstein distribution. In this context, as happens for photons in a medium, the effective phase velocity \(v_g\) of these massless excitations is not given by the speed of light c but it is suppressed by a factor depending on the number of quanta present in the universe at the apparent horizon. We found interesting formulas relating the cosmological constant, the number of quanta N and the mean value \(\overline{\lambda }\) of the wavelength of the gravitons. In this context, we study the possibility to look to the gravitons system so obtained as being very near to be a Bose–Einstein condensate. Finally, an attempt is done to write down the Friedmann flat equations in terms of N and \(\overline{\lambda }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As shown in [32], when the Planck constant \(\hbar \) is introduced, a non vanishing \(U_h\) is allowed.

  2. This permit us to trace back [33] the thermal history of the universe in terms of \(T_u-T_h\), being \(T_u\) the temperature of the matter energy inside \(L_h\) where a de Sitter phase emerges when \(T_u=T_h\).

  3. For the case of negative quantum fluctuations, a quantum field theory formalism is necessary [36].

  4. Practically of the same order of the one predicted by the concordance \(\Lambda \)CDM model at present cosmological time.

  5. It is rather natural to suppose that \(\Lambda \), thanks to (8), is thermalized with the apparent horizon.

References

  1. Zlatev, I., Wang, L., Steinhardt, P.J.: Phys. Rev. Lett. 82(5), 896 (1999)

    Article  ADS  Google Scholar 

  2. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75(2), 559 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. Steinhardt, P.J., Turok, N.: Science 312, 1182 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hogan, J.: Nature 448(7151), 240 (2007)

    Article  ADS  Google Scholar 

  5. Wiltshire, D.L.: Phys. Rev. Lett. 99(25), 251101 (2007)

    Article  ADS  Google Scholar 

  6. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  7. Alam, U., Sahni, V., Saini, T.D., Starobinsky, A.A.: Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    Article  ADS  Google Scholar 

  8. Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  9. Zlatev, I., Wang, L., Steinhardt, P.J.: Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  10. Wetterich, C.: Nucl. Phys. B 302, 302 (1988)

    Google Scholar 

  11. Li, M.: Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  12. Gong, Y.: Phys. Rev. D 70, 064029 (2004)

    Article  ADS  Google Scholar 

  13. Gao, C., Wu, F.Q., Cheng, X., Shen, Y.G.: Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  14. Bhatt, J.R., Desai, B.R., Ma, E., Rajasekaran, G., Sarkar, U.: Phys. Lett B. 687, 75 (2010)

    Article  ADS  Google Scholar 

  15. Basilakos, S., Lima, J.A.S., Solá, J.: Int. J. Mod. Phys. D 22, 1342008 (2013)

    Article  ADS  Google Scholar 

  16. Das, S., Bhaduri, R.K.: Class. Quantum Gravity 32, 105003 (2015)

    Article  ADS  Google Scholar 

  17. Susskind, L.: J. Math. Phys. 36, 6377 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  18. Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  19. Corda, C.: Int. J. Mod. Phys. D 18, 2275 (2009)

    Article  ADS  Google Scholar 

  20. Abbott, B.P., LIGO Scientific Collaboration and Virgo Collaboration, et al.: Phys. Rev. Lett. 116, 061102 (2016)

  21. Akbar, M., Cai, R.G.: Phys. Rev. D 75, 084003 (2007)

    Article  ADS  Google Scholar 

  22. Padmanabhan, T.: Rep. Prog. Phys. 73, 046901 (2010)

    Article  ADS  Google Scholar 

  23. Padmanabhan, T.: Gen. Relativ. Gravit. 46, 1673 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  24. Akbar, M.: Chin. Phys. Lett. 25, 4199 (2008)

    Article  ADS  Google Scholar 

  25. Cai, R.G., Kim, S.P.: JHEP 0502, 050 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. Saridakis, E.N., Diaz, P.F.G., Siguenza, C.L.: Class. Quantum Gravity 26, 165003 (2009)

    Article  ADS  Google Scholar 

  27. Tian, D.W., Booth, I.: Phys. Rev. D 92, 024001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hayward, S.A.: Phys. Rev. D 49, 6467 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  29. Faraoni, V.: Phys. Rev. D 84, 024003 (2011)

    Article  ADS  Google Scholar 

  30. Viaggiu, S.: Mod. Phys. Lett. A 17, 1450091–1 (2014)

    Article  MathSciNet  Google Scholar 

  31. Viaggiu, S.: Gen. Relativ. Gravit. 47(8), 86 (2015). doi:10.1007/s10714-015-1928-y

    Article  ADS  MathSciNet  Google Scholar 

  32. Viaggiu, S.: Mod. Phys. Lett. A 4, 1650016 (2016)

    Article  MathSciNet  Google Scholar 

  33. Viaggiu, S.: Int. J. Mod. Phys. D 2, 1650033 (2016)

    Article  MathSciNet  Google Scholar 

  34. Tryon, E.P.: Nature 246, 396 (1973)

    Article  ADS  Google Scholar 

  35. Klaers, J., Schmitt, J., Vewinger, F., Veitz, M.: Nature 468, 545 (2010)

    Article  ADS  Google Scholar 

  36. Ford, L.H.: Int. J. Mod. Phys. A 25, 2355 (2010)

    Article  ADS  Google Scholar 

  37. De Felice, A., Gumrukcuoglu, A.E., Chunshan, L., Mukohyama, S.: Class. Quantum Gravity 30, 184004 (2013)

    Article  ADS  Google Scholar 

  38. Bhattacharya, K., Mohanty, S., Nautiyal, A.: Phys. Rev. Lett. 97(25), 251301 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Viaggiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viaggiu, S. A statistical representation of the cosmological constant from finite size effects at the apparent horizon. Gen Relativ Gravit 48, 100 (2016). https://doi.org/10.1007/s10714-016-2095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2095-5

Keywords

Navigation