Skip to main content
Log in

Deciphering and generalizing Demiański–Janis–Newman algorithm

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the case of vanishing cosmological constant, Demiański has shown that the Janis–Newman algorithm can be generalized in order to include a NUT charge and another parameter c, in addition to the angular momentum. Moreover it was proved that only a NUT charge can be added for non-vanishing cosmological constant. However despite the fact that the form of the coordinate transformations was obtained, it was not explained how to perform the complexification on the metric function, and the procedure does not follow directly from the usual Janis–Newman rules. The goal of our paper is threefold: explain the hidden assumptions of Demiański’s analysis, generalize the computations to topological horizons (spherical and hyperbolic) and to charged solutions, and explain how to perform the complexification of the function. In particular we present a new solution which is an extension of the Demiański metric to hyperbolic horizons. These different results open the door to applications on (gauged) supergravity since they allow for a systematic application of the Demiański–Janis–Newman algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Demiański’s metric has been generalized in [20, 25, 26].

  2. Note that JN algorithm is off-shell: in general it does not preserve the equations of motion and it can be performed on any field configuration, not only on solutions.

  3. We call a “seed/stationary metric function” a function that appears in the seed/stationary metric. The term “stationary” is used to describe the metric resulting from the DJN algorithm, which generically is non-static.

  4. We do not treat the case of flat horizon but this could be obtained from some easy reparametrization.

  5. We stress that at this stage these formulas do not satisfy Einstein equations, they are just a proxy to simplify later computations.

  6. Similar transformations have been studied by Talbot [31].

  7. In his paper [6] Demiański considers functions that depend on \(\theta \) and \(\phi \), but he drops the \(\phi \)-dependence at an intermediate step. Because we want to keep a \(\mathrm {U}(1)_\phi \) isometry we will follow him and ignore any \(\phi \) dependence.

  8. The prime on F and G denoting the differentiation with respect to \(\theta \). In general primes on functions denote derivative with respect to its argument - which is \(\theta \) here -, while primes on u and r indicates new variables.

  9. This condition is not explicit in Demiański’s paper [6] but it is useful to take it into account in the computations.

  10. This may also be derived from the tetrad formalism [1, 10, 18].

  11. Note that in several examples where BL coordinates exist, \(A_r\) depends only on r and hence is removable by a gauge transformation, such that this situation seems to be generic.

  12. In particular all expressions are quadratic in F, but only linear in \(F^{\prime }\).

  13. We relax this assumption in “Appendix 2.2”.

  14. In [6] the last term of \(\tilde{f}\) is missing as pointed out in [29], as can be compared with other references on (A)dS-Taub-NUT, see for example [2].

  15. In ”Appendix 2.2” we relax this last assumption by allowing non-constant \(\kappa F + K\). In this context the equations and the function \(\tilde{f}\) are modified and this provides an explanation for the error in \(\tilde{f}\) of Demiański’s paper [6].

  16. In [21] Leigh et al. generalized Geroch’s solution generating technique and also found that only the mass and the NUT charge appear when \(\varLambda \ne 0\). We would like to thank D. Klemm for this remark.

  17. For simplicity we consider the case where F and G are expanded over the same parameters, but this is not necessarily the case.

  18. This breaks down when the metric is transformed with more complicated rules, such as in higher dimensions [11].

  19. Indeed the electric charge appears only as a term \(q^2 / r^2\) which is decoupled from the NUT charge.

  20. Notice that AdS-Taub-NUT (for \(\kappa = -1\), \(m = 0\)) is supersymmetric for \(n = \pm 1/(2g)\) where \(g^2 = - \varLambda / 3\) [2, tab. 1].

  21. The imaginary part of the new mass term appears in other contexts [5, 17, 27, 30]. In particular this corresponds to a condition of regularity in Euclidean signature.

  22. This idea has been generalized in [4] to include a third function.

References

  1. Adamo, T., Newman, E.T.: The Kerr–Newman metric: a review. Scholarpedia 9, 31791 (2014). doi:10.4249/scholarpedia.31791

    Article  ADS  Google Scholar 

  2. Alonso-Alberca, N., Meessen, P., Ortín, T.: Supersymmetry of topological Kerr–Newmann-Taub-NUT-aDS spacetimes. Class. Quantum Gravity 17(14), 2783–2797 (2000). doi:10.1088/0264-9381/17/14/312

    Article  ADS  MATH  Google Scholar 

  3. Azreg-Aïnou, M.: From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with(out) electric or magnetic field. Eur. Phys. J. C 74(5) (2014). doi:10.1140/epjc/s10052-014-2865-8

  4. Azreg-Aïnou, M.: Generating rotating regular black hole solutions without complexification. Phys. Rev. D 90(6) (2014). doi:10.1103/PhysRevD.90.064041

  5. Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Large N Phases, gravitational instantons and the nuts and bolts of AdS holography. Phys. Rev. D 59(6). doi:10.1103/PhysRevD.59.064010

  6. Demiański, M.: New Kerr-like space-time. Phys. Lett. A 42(2), 157–159 (1972). doi:10.1016/0375-9601(72)90752-9

    Article  ADS  MathSciNet  Google Scholar 

  7. Demiański, M., Newman, E.T.: Combined Kerr-NUT solution of the Einstein field equations. Bull. Acad. Pol. Sci., Ser. Sci. Math. astron. Phys. 14, 653–657 (1966)

    MATH  Google Scholar 

  8. Drake, S.P., Szekeres, P.: Uniqueness of the Newman–Janis algorithm in generating the Kerr–Newman metric. Gen. Relat. Gravit. 32(3), 445–457 (2000). doi:10.1023/A:1001920232180

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Drake, S.P., Turolla, R.: The application of the Newman–Janis algorithm in obtaining interior solutions of the Kerr metric. Class. Quantum Gravity 14(7), 1883–1897 (1997). doi:10.1088/0264-9381/14/7/021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Erbin, H.: Janis–Newman algorithm: simplifications and gauge field transformation. Gen. Relat. Gravit. 47(3), 19 (2015). doi:10.1007/s10714-015-1860-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Erbin, H., Heurtier, L.: Five-dimensional Janis–Newman algorithm. Class. Quantum Gravity 32(16), 165004 (2015). doi:10.1088/0264-9381/32/16/165004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Erbin, H., Heurtier, L.: Supergravity, complex parameters and the Janis–Newman algorithm. Class. Quantum Gravity 32(16), 165005 (2015). doi:10.1088/0264-9381/32/16/165005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ferraro, R.: Untangling the Newman–Janis algorithm. Gen. Relat. Gravit. 46(4) (2014). doi:10.1007/s10714-014-1705-3

  14. Giampieri, G.: Introducing angular momentum into a black hole using complex variables. Gravity Res. Found. (1990)

  15. Herrera, L., Jiménez, J.: The complexification of a nonrotating sphere: an extension of the Newman–Janis algorithm. J. Math. Phys. 23(12), 2339–2345 (1982). doi:10.1063/1.525325

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Ibohal, N.: Rotating metrics admitting non-perfect fluids in general relativity. Gen. Relat. Gravit. 37(1), 19–51 (2005). doi:10.1007/s10714-005-0002-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Johnson, C.V.: Thermodynamic volumes for AdS–Taub-NUT and AdS–Taub-Bolt. Class. Quantumm Gravity 31, 235003 (2014). doi:10.1088/0264-9381/31/23/235003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Keane, A.J.: An extension of the Newman–Janis algorithm. Class. Quantum Gravity 31(15), 155003 (2014). doi:10.1088/0264-9381/31/15/155003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Krasiński, A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  20. Krori, K.D., Chaudhury, T., Bhattacharjee, R.: Charged Demianski metric. J. Math. Phys. 22(10), 2235–2236 (1981). doi:10.1063/1.524792

    Article  ADS  MATH  Google Scholar 

  21. Leigh, R.G., Petkou, A.C., Petropoulos, P.M., Tripathy, P.K.: The Geroch group in Einstein spaces. Class. Quantum Gravity 31(22), 225006 (2014)

  22. Nawarajan, D., Visser, M.: Cartesian Kerr–Schild variation on the Newman–Janis ansatz (2016). Preprint arXiv:1601.03532

  23. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6(6), 918–919 (1965). doi:10.1063/1.1704351

    Article  ADS  MathSciNet  Google Scholar 

  24. Newman, E.T., Janis, A.I.: Note on the Kerr spinning-particle metric. J. Math. Phys. 6(6), 915–917 (1965). doi:10.1063/1.1704350

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Patel, L.K.: Radiating Demianski-type space-times. Indian J. Pure Appl. Math 9, 1019 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Patel, L.K., Akabari, R.P., Dave, U.K.: Radiating Demianski-type metrics and the Einstein–Maxwell fields. ANZIAM J 30(01), 120–126 (1988). doi:10.1017/S0334270000006081

    MathSciNet  MATH  Google Scholar 

  27. Plebański, J.F.: A class of solutions of Einstein–Maxwell equations. Ann. Phys. 90(1), 196–255 (1975). doi:10.1016/0003-4916(75)90145-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Plebański, J.F., Demiański, M.: Rotating, charged, and uniformly accelerating mass in general relativity. Ann. Phys. 98(1), 98–127 (1976). doi:10.1016/0003-4916(76)90240-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Quevedo, H.: Complex transformations of the curvature tensor. Gen. Relat. Gravit. 24(7), 693–703 (1992). doi:10.1007/BF00760076

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Quevedo, H.: Determination of the metric from the curvature. Gen. Relat. Gravit. 24(8), 799–819 (1992). doi:10.1007/BF00759087

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Talbot, C.J.: Newman–Penrose approach to twisting degenerate metrics. Commun. Math. Phys. 13(1), 45–61 (1969). doi:10.1007/BF01645269

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Whisker, R.: Braneworld Black Holes. Ph.D. thesis, University of Durham (2008)

  33. Yazadjiev, S.: Newman–Janis method and rotating dilaton-axion black hole. Gen. Relat. Gravit. 32(12), 2345–2352 (2000). doi:10.1023/A:1002080003862

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I wish to thank Lucien Heurtier for many discussions and collaborations on related topics and for corrections on the draft version. I am also very grateful to Nick Halmagyi and Dietmar Klemm for support and interesting discussionsn, and to Corinne de Lacroix for reading the manuscript. This work, made within the Labex Ilp (reference Anr-10-Labx-63), was supported by French state funds managed by the Agence nationale de la recherche, as part of the programme Investissements d’avenir under the reference Anr-11-Idex-0004-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Erbin.

Appendices

Appendix 1: Original Demiański’s solution

In this appendix we recall the Demiański’s result, amended to fix some errors [29]. They follow from Sect. 4 with \(\kappa = 1\) and \(q = 0\). This gives also the opportunity to present prettier formulas.

The equations are

$$\begin{aligned} 2 F&= G^{{\prime }{\prime }}+ \cot \theta \; G^{\prime }, \end{aligned}$$
(84a)
$$\begin{aligned} n&= F + K, \end{aligned}$$
(84b)
$$\begin{aligned} 0&= \varLambda F^{\prime }\end{aligned}$$
(84c)

with

$$\begin{aligned} 2 K = F^{{\prime }{\prime }}+ \cot \theta \, F^{\prime }. \end{aligned}$$
(85)

The function \(\tilde{f}\) is

$$\begin{aligned} \tilde{f} = 1 - \frac{2m r - q^2 + 2 F (F + K)}{r^2 + F^2} - \frac{\varLambda }{3}\, (r^2 + F^2) - \frac{4 \varLambda }{3}\, F^2 + \frac{8 \varLambda }{3}\, \frac{F^4}{r^2 + F^2}. \end{aligned}$$
(86)

The two solutions for F and G are

  • \(\varLambda \ne 0\)

    $$\begin{aligned} F(\theta ) = n, \qquad G(\theta ) = - 2 n \ln \sin (\theta ). \end{aligned}$$
    (87)
  • \(\varLambda = 0\)

    $$\begin{aligned} F&= n - a \cos \theta + c \left( 1 + \cos \theta \, \ln \tan \frac{\theta }{2} \right) , \end{aligned}$$
    (88a)
    $$\begin{aligned} G&= a \cos \theta - 2 n \ln \sin \theta - c \cos \theta \, \ln \tan \frac{\theta }{2}. \end{aligned}$$
    (88b)

Appendix 2: Relaxing assumptions

1.1 Appendix 2.1: Metric function F-dependence

In Sect. 4.2.1 we obtained the Eq. (46b)

$$\begin{aligned} \kappa \, F + K = \kappa \, n, \qquad 2 K = F^{{\prime }{\prime }}+ \frac{H^{\prime }}{H}\, F^{\prime }\end{aligned}$$
(89)

by asking that the function (46d)

$$\begin{aligned} \tilde{f} = \kappa - \frac{2m r - q^2 + 2 F (\kappa \, F + K)}{r^2 + F^2} - \frac{\varLambda }{3}\, (r^2 + F^2) - \frac{4 \varLambda }{3}\, F^2 + \frac{8 \varLambda }{3}\, \frac{F^4}{r^2 + F^2} \end{aligned}$$
(90)

depends on \(\theta \) only through \(F(\theta )\).

A more general assumption would be that \(\kappa F + K\) is some function \(\chi = \chi (F)\)

$$\begin{aligned} \kappa \, F + K = \kappa \, \chi (F). \end{aligned}$$
(91)

First if \(F^{\prime }= 0\) then \(K = 0\) and the definition of K implies

$$\begin{aligned} \chi = F = n. \end{aligned}$$
(92)

The \((t\theta )\)- and \((\theta \phi )\)-components give the equation

$$\begin{aligned} 4 \varLambda \, F^2 F^{\prime }= F^{\prime }\, \partial _F \chi . \end{aligned}$$
(93)

If \(\varLambda = 0\) we find that

$$\begin{aligned} \partial _F \chi = 0 \Longrightarrow \chi = n \end{aligned}$$
(94)

which reduces to the case studied in Sect. 4.2.1, while if \(F^{\prime }= 0\) this equation does not provide anything.

On the other hand if \(F^{\prime }\ne 0\) and \(\varLambda \ne 0\) then the previous equation becomes

$$\begin{aligned} \partial _F \chi = 4 \varLambda F^2 \end{aligned}$$
(95)

which can be integrated to

$$\begin{aligned} \chi (F) = n + \frac{4}{3}\, \varLambda F^3 \end{aligned}$$
(96)

(notice that the limit \(\varLambda \rightarrow 0\) is coherent). Plugging this function into Eq. (91) one obtains

$$\begin{aligned} \kappa \, F + K = \kappa \left( n + \frac{4}{3}\, \varLambda F^3 \right) \end{aligned}$$
(97)

(remember that \(F^{\prime }\ne 0\)). This differential equation is non-linear and we were not able to find an analytical solution. Despite that this provides a generalization of the algorithm with non-constant F in the presence of a cosmological constant this is not sufficient for obtaining Kerr-(a)dS: the form of \(g_{\theta \theta }\) given in (26) is not required one.

Nonetheless by inserting the expression of \(\chi \) in \(\tilde{f}\) we see that the last term is killed

$$\begin{aligned} \tilde{f} = \kappa - \frac{2m r - q^2 + 2 \kappa \, n\, F}{r^2 + F^2} - \frac{\varLambda }{3}\, (r^2 + F^2) - \frac{4 \varLambda }{3}\, F^2. \end{aligned}$$
(98)

One can recognize the function given by Demiański [6]. Then this function is valid at the condition that Eq. (46b) is modified to (97), but in this case the solution is not the general (A)dS-Taub-NUT anymore.

1.2 Appendix 2.2: Gauge field integration constant

In Sect. 4.2.1 we obtained a second integration constant \(\alpha \) in the expression of the gauge field

$$\begin{aligned} \tilde{f}_A = \frac{q\, r}{r^2 + F^2} + \alpha \, \frac{r^2 - F^2}{r^2 + F^2}. \end{aligned}$$
(99)

One of the Maxwell equation gave \(\alpha = 0\) if \(F^{\prime }\ne 0\), but otherwise no equation fixes its value. For this reason we focus on the case \(F^{\prime }= 0\) or equivalently \(\varLambda = 0\) through equation (46c).

In this case the function \(\tilde{f}\) is modified to

$$\begin{aligned} \tilde{f} = \kappa - \frac{2m r - q^2 + 2 F (\kappa \, F + K) + 4 \alpha ^2 F^2}{r^2 + F^2} - \frac{\varLambda }{3}\, (r^2 + F^2) - \frac{4 \varLambda }{3}\, F^2 + \frac{8 \varLambda }{3}\, \frac{F^4}{r^2 + F^2}. \end{aligned}$$
(100)

Equation (46c) is modified but it is still solved by \(F^{\prime }= 0\) and all other equations are left unchanged (in particular \(\kappa F + K\) is still given by the function \(\chi (F)\) (96)). For \(\chi (F) = n\) the configuration with \(\alpha \ne 0\) provides another solution when \(\varLambda \ne 0\) but it is not clear how to get it from a complexification of the function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbin, H. Deciphering and generalizing Demiański–Janis–Newman algorithm. Gen Relativ Gravit 48, 56 (2016). https://doi.org/10.1007/s10714-016-2054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2054-1

Keywords

Navigation