Skip to main content
Log in

Spacetime with zero point length is two-dimensional at the Planck scale

  • Letter
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It is generally believed that any quantum theory of gravity should have a generic feature—a quantum of length. We provide a physical ansatz to obtain an effective non-local metric tensor starting from the standard metric tensor such that the spacetime acquires a zero-point-length \(\ell _0\) of the order of the Planck length \(L_{P}\). This prescription leads to several remarkable consequences. In particular, the Euclidean volume \(V_D(\ell ,\ell _0)\) in a D-dimensional spacetime of a region of size \(\ell \) scales as \(V_D(\ell , \ell _0) \propto \ell _0^{D-2} \ell ^2\) when \(\ell \sim \ell _0\), while it reduces to the standard result \(V_D(\ell ,\ell _0) \propto \ell ^D\) at large scales (\(\ell \gg \ell _0\)). The appropriately defined effective dimension, \(D_\mathrm{eff} \), decreases continuously from \(D_\mathrm{eff}=D\) (at \(\ell \gg \ell _0\)) to \(D_\mathrm{eff}=2\) (at \(\ell \sim \ell _0\)). This suggests that the physical spacetime becomes essentially 2-dimensional near Planck scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. It might seem that a simpler definition is just \(D_\mathrm{eff} = ({\mathrm {d}\ln { V_D(\ell ,\ell _0) } }/{\mathrm {d}\ln \ell })\). However, in any D-dimensional curved space with a smooth metric \(g_{ab}\), this definition will give D only for \(R\ell ^2\ll 1\); that is at scales small compared to curvature scale. The role of \(V_D(\ell ,\ell _0=0)\) in the definition is to remove the contribution from the background curvature to \(D_\mathrm{eff}\) thereby ensuring that \(D_\mathrm{eff}=D\) when \(\ell _0=0\). So any deviation of D from \(D_\mathrm{eff}\) arises only due to the existence of the zero-point-length.

References

  1. DeWitt, B.S.: Phys. Rev. Lett. 13, 114 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  2. Padmanabhan, T.: Gen. Relativ. Gravit. 17, 215 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. Padmanabhan, T.: Ann. Phys. 165, 38 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Padmanabhan, T.: Phys. Rev. Lett. 78, 1854 (1997). arXiv:hep-th/9608182

    Article  ADS  Google Scholar 

  5. Garay, L.: Phys. Rev. Lett. 80, 2508 (1998). arXiv:gr-qc/9801024

    Article  ADS  MathSciNet  Google Scholar 

  6. Garay, L.: Int. J. Mod. Phys. A 10, 145 (1995)

    Article  ADS  Google Scholar 

  7. Kothawala, D., Padmanabhan, T.: Phys. Rev. D 90, 124060 (2014). arXiv:1405.4967

    Article  ADS  Google Scholar 

  8. ’t Hooft, G.: Quantum gravity: a fundamental problem and some radical ideas. In: Levy, M., Deser, S. (eds) Recent Developments in Gravitation (Cargese 1978). Plenum, New York (1978)

  9. Kothawala, D.: Phys. Rev. D 88, 104029 (2013). arXiv:1307.5618

    Article  ADS  Google Scholar 

  10. Stargen, D.J., Kothawala, D.: arXiv:1503.03793 (to appear in Phys. Rev. D)

  11. Kothawala, D., Padmanabhan, T.: Phys. Lett. B 748, 67 (2015). arXiv:1408.3963

    Article  ADS  Google Scholar 

  12. Chakraborty, S., Padmanabhan, T.: in preparation (2015)

  13. Gray, A.: Mich. Math. J. 20, 329 (1973)

    Google Scholar 

  14. Carlip, S., Mosna, R., Pitelli, J.: Phys. Rev. Lett. 107, 021303 (2011). arXiv:1103.5993

    Article  ADS  Google Scholar 

  15. Carlip, S.: Foundations of Space and Time. In: Ellis, G., Murugan, J., Weltman, A. (eds). Cambridge University Press. arXiv:1009.1136 (2012)

  16. Carlip, S.: AIP Conference Proceedings 1196, 72 (2009). arXiv:0909.3329

  17. Calcagni, G.: Phys. Rev. Lett. 104, 251301 (2010). arXiv:0912.3142

    Article  ADS  Google Scholar 

  18. Ambjorn, J., Jurkiewicz, J., Loll, R.: Phys. Rev. Lett. 95, 171301 (2005). arXiv:hep-th/0505113

    Article  ADS  Google Scholar 

  19. Ambjorn, J., Jurkiewicz, J., Loll, R.: Phys. Rev. D 72, 064014 (2005). arXiv:hep-th/0505154

    Article  ADS  Google Scholar 

  20. Modesto, L.: Class. Quantam Gravity 26, 242002 (2009). arXiv:0812.2214

    Article  ADS  MathSciNet  Google Scholar 

  21. Calcagni, G., Oriti, D., Thurigen, J.: Class. Quantam Gravity 30, 125006 (2013). arXiv:1208.0354

    Article  ADS  MathSciNet  Google Scholar 

  22. Calcagni, G., Oriti, D., Thurigen, J.: Class. Quantam Gravity 31, 135014 (2014). arXiv:1311.3340

    Article  ADS  MathSciNet  Google Scholar 

  23. Husain, V., Seahra, S.S., Webster, E.J.: Phys. Rev. D 88, 024014 (2013). arXiv:1305.2814

    Article  ADS  Google Scholar 

  24. Padmanabhan, T.: Mod. Phys. Lett. A 30, 1540007 (2015). arXiv:1410.6285

    Article  ADS  MathSciNet  Google Scholar 

  25. Padmanabhan, T.: Rep. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004

    Article  ADS  Google Scholar 

  26. Padmanabhan, T., Paranjape, A.: Phys. Rev. D 75, 064004 (2007). arXiv:gr-qc/0701003

  27. Padmanabhan, T., Padmanabhan, H.: Int. J . Mod. Phys., D 23, 1430011(2014). arXiv:1404.2284

Download references

Acknowledgments

Research of T.P is partially supported by J.C. Bose research Grant of DST, Govt. of India. Research of S.C is funded by SPM Fellowship from CSIR, Govt. of India. We thank Krishnamohan Parattu, Suprit Singh and Kinjalk Lochan for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Chakraborty.

Appendix

Appendix

In this appendix we will briefly illustrate how the prescription of qmetric works by describing the key steps in computing R and K for the qmetric; the general derivation and expressions can be found in [10]. Here, we will sketch an easier method based on using the synchronous frame for the background metric (the details will be given in [12]). The qmetric line element in the synchronous frame turns out to be,

$$\begin{aligned} \mathrm {d}s^{2}=\frac{1}{A(\sigma )}\left[ \mathrm {d}\sigma ^{2}+A^{2}(\sigma )\left( \frac{\Delta _{\phantom {F}}}{\Delta _{\mathcal F}}\right) ^{2/D_{1}}h_{\alpha \beta } \mathrm {d}x^{\alpha } \mathrm {d}x^{\beta }\right] ;\quad A=\frac{\sigma ^{2}+\ell _0^{2}}{\sigma ^{2}} \end{aligned}$$
(13)

where \(D_{1}=D-1\). Then the Ricci biscalar \(R[q_{ab}]\) can be computed using the usual formula which relates the metric to Ricci scalar with all derivatives acting on x. We then get:

$$\begin{aligned} R_{q}=&\frac{1}{A}R_{\Sigma } \left( \frac{\Delta _{\phantom {F}}}{\Delta _{\mathcal F}}\right) ^{-2/D_1}s - \frac{D_1D_2}{\mathcal F(\sigma ^{2})}+4(D+1)\dfrac{d\ln \Delta _{\mathcal F}}{\mathrm {d}\mathcal F}\nonumber \\&-\frac{\mathcal F}{\sigma ^{2}}\left( K_{ab}K^{ab}-\frac{1}{D_{1}}K^{2}\right) +4 \mathcal F \left[ -\frac{D}{D_{1}}\left( \frac{d\ln \Delta _{\mathcal F}}{\mathrm {d}\mathcal F}\right) ^{2}+2\dfrac{\mathrm {d}^{2}\ln \Delta _{\mathcal F}}{\mathrm {d}\mathcal F^{2}}\right] \end{aligned}$$
(14)

where again \(D_{2}\) stands for \(D-2\) and \(R_{\Sigma }\) stands for the curvature scalar on \(\sigma =\text {constant}\) surface. In the final expression we interpret \(\sigma (x,x')\) as the geodesic distance in the background metric. Then using expressions for derivatives of the van Vleck determinant, we first take the coincidence limit \(\sigma ^{2}\rightarrow 0\) keeping \(\ell _0\) finite to obtain (with \(\mathcal {S}\equiv R_{ab}n^{a}n^{b}\)):

$$\begin{aligned} \lim _{\sigma \rightarrow 0}R_{q}=D\mathcal {S}+\frac{2}{3}(D+1)\left( n^{a}\nabla _{a}\mathcal {S}\right) \ell _0+\mathcal {O}(\ell _0^{2}) \end{aligned}$$
(15)

If we now take \(\ell _0\rightarrow 0\) we get,

$$\begin{aligned} \lim _{\ell _0\rightarrow 0}\lim _{\sigma \rightarrow 0}R_{q}=D\mathcal {S} \end{aligned}$$
(16)

where all the objects on the right hand side is being determined by the bare metric \(g_{ab}\) (see also [10]). Note that if we first take the limit \(\ell _0\rightarrow 0\) in Eq. (14), we would obtain the Ricci scalar for the bare metric and the second limit of \(\sigma ^2\rightarrow 0\) becomes vacuous. Hence the two limits (a) \(\sigma \rightarrow 0\) and (b) \(\ell _0\rightarrow 0\) do not commute, as noted in Eq. (4).

Similar result holds for trace of extrinsic curvature K of the equi-geodesic surface evaluated for the qmetric. There we readily obtain leading terms in orders of \(\ell _0^{2}\) to be,

$$\begin{aligned} \lim _{\sigma \rightarrow 0} K_{q}=\frac{D_{1}}{\ell _0}-\frac{\ell _0}{3}\mathcal {S} \end{aligned}$$
(17)

In which \(\mathcal {S}=R_{ab}n^{a}n^{b}\), evaluated for the bare metric, appears again. This quantity \(\mathcal {S}\) is the entropy density of the null surfaces used in the emergent gravity paradigm [2426]. The first term in Eq. (17) is a zero point entropy density of the spacetime and is closely related to the possible solution to the cosmological constant problem [11, 27].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmanabhan, T., Chakraborty, S. & Kothawala, D. Spacetime with zero point length is two-dimensional at the Planck scale. Gen Relativ Gravit 48, 55 (2016). https://doi.org/10.1007/s10714-016-2053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2053-2

Keywords

Navigation