Skip to main content
Log in

Non-linear regime of the Generalized Minimal Massive Gravity in critical points

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Generalized Minimal Massive Gravity (GMMG) theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. In the present paper we obtain exact solutions to the GMMG field equations in the non-linear regime of the model. GMMG model about \(AdS_3\) space is conjectured to be dual to a 2-dimensional CFT. We study the theory in critical points corresponding to the central charges \(c_-=0\) or \(c_+=0\), in the non-linear regime. We show that \(AdS_3\) wave solutions are present, and have logarithmic form in critical points. Then we study the \(AdS_3\) non-linear deformation solution. Furthermore we obtain logarithmic deformation of extremal BTZ black hole. After that using Abbott–Deser–Tekin method we calculate the energy and angular momentum of these types of black hole solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In our notation \(G=1\).

  2. Here we should mention that may be exist other solutions which are not investigated here. Boundary condition restrict the scope of solutions. So by some special boundary conditions some of solutions will be excluded. To clarifying the matter, we focus on the solution (41). If we demand following boundary conditions

    $$\begin{aligned} g_{\mu \nu }= \begin{pmatrix} \mathcal {O} (r^{2}) &{} \mathcal {O} (1) &{} \mathcal {O} (r^{2}) \\ &{} \mathcal {O} (\frac{1}{r^{4}}) &{} \mathcal {O} (1) \\ &{} &{} \mathcal {O} (r^{2}) \end{pmatrix} \end{aligned}$$

    \(d_{2}\) vanishes in (41) and we lost logarithmic term. In any case we must impose some boundary conditions, but they needs to satisfy finiteness of asymptotic charges. Due to this, here (38) and (41) are good solutions with finite asymptotic charges. In the other hand there are some interesting solutions, like (39), (40), etc, whose asymptotic charges can not be calculated by the ADT method.

References

  1. Bergshoeff, E., Hohm, O., Merbis, W., Routh, A.J., Townsend, P.K.: Class. Quantum Gravity 31, 145008 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. Deser, S., Jackiw, R., Templeton, S.: Ann. Phys. 140, 372 (1982) [Erratum-ibid. 185, 406.1988 APNYA, 281,409 (1988 APNYA,281,409–449.2000)]

  3. Baykal, A.: Class. Quantum Gravity 32, 025013 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Tekin, B.: Phys. Rev. D 90, 081701 (2014)

    Article  ADS  Google Scholar 

  5. Setare, M.R.: Nucl. Phys. B 898, 259 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bergshoeff, E.A., Hohm, O., Townsend, P.K.: Phys. Rev. Lett. 102, 201301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Arvanitakis, A.S., Routh, A.J., Townsend, P.K.: Class. Quantum Gravity 31(23), 235012 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. Giribet, G., Vsquez, Y.: Phys. Rev. D 91, 024026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Arvanitakis, A.S.: Class. Quantum Gravity 32(11), 115010 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Altas, E., Tekin, B.: Phys. Rev. D 92, 025033 (2015)

    Article  ADS  Google Scholar 

  11. Deger, N.S., Sarioglu, O.: arXiv:1505.03387 [hep-th]

  12. Ayon-Beato, A., Hassaine, M.: Ann. Phys. 317, 175 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ayon-Beato, A., Hassaine, M.: Phys. Rev. D 73, 104001 (2006)

    Article  ADS  Google Scholar 

  14. Ayon-Beato, A., Giribet, G., Hassaine, M.: JHEP 0905, 029 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Siklos, S.T.C.: Lobatchevski plane gravitational waves. In: MacCallum, M.A.H. (ed.) Galaxies, Axisymmetric Systems and Relativity. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  16. Giribet, G., Leston, M.: JHEP 1009, 070 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Grumiller, D., Sachs, I.: JHEP 03, 012 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Anastasiou, G.G., Setare, M.R., Vagenas, E.C.: Phys. Rev. D 88, 064054 (2013)

    Article  ADS  Google Scholar 

  19. Grumiller, D., Johansson, N.: JHEP 0807, 134 (2008)

    Article  ADS  Google Scholar 

  20. Grumiller, D., Johansson, N.: Int. J. Mod. Phys. D 17 (2009) 2367. Erratum: S. Ertl et al., arXiv:0910.1706 [hep-th]

  21. Maloney, A., Song, W., Strominger, A.: Phys. Rev. D 81, 064007 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bergshoeff, E. A., Goya, A. F., Merbis, W., Rosseel, J.: arXiv:1401.5386 [hep-th]

  23. Bergshoeff, E.A., de Haan, S., Merbis, W., Rosseel, J., Zojer, T.: Phys. Rev. D 86, 064037 (2012)

    Article  ADS  Google Scholar 

  24. Grumiller, D., Johansson, N., Zojer, T.: JHEP 1101, 090 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  25. Compere, G., de Buyl, S., Detournay, S.: JHEP 1010, 042 (2010)

    Article  ADS  Google Scholar 

  26. Abbott, L.F., Deser, S.: Nucl. Phys. B 195, 76 (1982)

    Article  ADS  Google Scholar 

  27. Deser, S., Tekin, B.: Phys. Rev. Lett. 89, 101101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. Deser, S., Tekin, B.: Phys. Rev. D 67, 084009 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. Setare, M.R., Adami, H.: Phys. Lett. B 744, 280 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Brown, J.D., Henneaux, M.: Commun. Math. Phys. 104, 207 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  31. Grumiller, D., Hohm, O.: Phys. Lett. B 686, 264 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referee for useful comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Setare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setare, M.R., Adami, H. Non-linear regime of the Generalized Minimal Massive Gravity in critical points. Gen Relativ Gravit 48, 36 (2016). https://doi.org/10.1007/s10714-016-2033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2033-6

Keywords

Navigation