Skip to main content

Advertisement

Log in

Dynamics of minimally coupled dark energy in spherical halos of dark matter

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We analyse the evolution of scalar field dark energy in the spherical halos of dark matter at the late stages of formation of gravitationally bound systems in the expanding Universe. The dynamics of quintessential dark energy at the center of dark matter halo strongly depends on the value of effective sound speed \(c_s\) (in units of speed of light). If \(c_s\sim 1\) (classical scalar field) then the dark energy in the gravitationally bound systems is only slightly perturbed and its density is practically the same as in cosmological background. The dark energy with small value of sound speed (\(c_s<0.1\)), on the contrary, is important dynamical component of halo at all stages of their evolution: linear, non-linear, turnaround, collapse, virialization and later up to current epoch. These properties of dark energy can be used for constraining the value of effective sound speed \(c_s\) by comparison the theoretical predictions with observational data related to the large scale gravitationally bound systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The excellent overview of the main properties of galaxies and clusters as well as the standard scenario of their formation one can find in the book [43].

  2. At the current epoch the galaxies and clusters are gravitationally classical objects.

  3. The density and velocity perturbations of thermal radiation and neutrino start to decay due to Silk and collisionless damping on the interesting scales soon after entering the particle horizon [44, 45].

  4. The equations with all non-linear terms are presented in [46].

  5. In the decomposition of velocity we put \(v_{0\, k}(a)=0\) over spherical symmetry: the central point is immovable and near the central point \(v(a,r)\propto r\).

  6. The Great Attractor or alike structures in our Universe are modelled by such perturbations to elucidate their main properties (see for example [51]).

  7. Since \(v_m\ll 1\) \(v_H\ll 1\) we ignore the relativistic transformations of 3-velocities.

  8. For comparison with linear stage see Fig. 2 in [16].

  9. The linear theory (50)–(53) for the same time gives 1.064.

References

  1. Yoo, J., Watanabe, Y.: Theoretical models of dark energy. Int. J. Mod. Phys. D 21, 1230002 (2012)

    Article  ADS  MATH  Google Scholar 

  2. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1936 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Tsujikawa, S: Dark energy: investigation and modeling, arXiv:1004.1493

  4. Caldwell, R.R.: Perspectives on dark energy. Sp. Sci. Rev. 148(1), 347–362 (2009)

    Article  ADS  Google Scholar 

  5. Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  6. Wolschin, G. (ed.): Lectures on Cosmology: Accelerated Expansion of the Universe. Lecture Notes in Physics. Springer, Berlin, Heidelberg (2010)

    MATH  Google Scholar 

  7. Ruiz-Lapuente, P. (ed.): Dark Energy: Observational and Theoretical Approaches. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  8. Novosyadlyj, B., Pelykh, V., Shtanov, Y, Zhuk, A.: In: Shulga V. (ed.) Dark Energy: Observational Evidence and Theoretical Models, p. 381. Akademperiodyka (2013)

  9. Durrer, R., Maartens, R.: Dark energy and dark gravity: theory overview. Gen. Relativ. Gravit. 40, 301 (2008)

  10. Amendola, L., Appleby, S., Bacon, D., Baker, T., et al.: Cosmology and fundamental physics with the Euclid satellite. Living Rev. Relativ. 16, 1 (2013)

    ADS  Google Scholar 

  11. Xia, J.-Q., Li, H., Zhang, X.: Dark energy constraints after the new Planck data. Phys. Rev. D 88, 063501 (2013)

    Article  ADS  Google Scholar 

  12. Rest, A., Scolnic, D., Foley, R.J., Huber, M.E., et al.: Cosmological constraints from measurements of type Ia supernovae discovered during the First 1.5 year of the Pan-STARRS1 survey. Astrophys. J. 795, 44 (2014)

    Article  ADS  Google Scholar 

  13. Cheng, C., Huang, Q.-G.: Dark side of the Universe after Planck data. Phys. Rev. D 89, 043003 (2014)

    Article  ADS  Google Scholar 

  14. Shafer, D., Huterer, D.: Chasing the phantom: a closer look at type Ia supernovae and the dark energy equation of state. Phys. Rev. D 89, 063510 (2014)

    Article  ADS  Google Scholar 

  15. Novosyadlyj, B., Sergijenko, O., Durrer, R., Pelykh, V.: Constraining the dynamical dark energy parameters: Planck-2013 vs WMAP9. J. Cosmol. Astropart. Phys. 05, 030 (2014)

    Article  ADS  Google Scholar 

  16. Sergijenko, O., Novosyadlyj, B.: Sound speed of scalar field dark energy: weak effects and large uncertainties. Phys. Rev. D 91, 083007 (2015)

    Article  ADS  Google Scholar 

  17. Gunn, J.E., Gott III, J.R.: On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1–19 (1972)

    Article  ADS  Google Scholar 

  18. Press, W.H., Schechter, P.: Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425 (1974)

    Article  ADS  Google Scholar 

  19. Peebles, P.J.E.: The Large Scale Structure of the Universe. Princeton University Press, Princeton (1980)

    Google Scholar 

  20. Bond, J., Cole, S., Efstathiou, G., Kaiser, N.: Excursion set mass functions for hierarchical Gaussian fluctuations. Astrophys. J. 379, 440 (1991)

    Article  ADS  Google Scholar 

  21. Bower, R.G.: The evolution of groups of galaxies in the Press-Schechter formalism. Mon. Not. R. Astron. Soc. 248, 332 (1991)

    Article  ADS  Google Scholar 

  22. Lahav, O., Rees, M.J., Lilje, P.B., Primack, J.R., et al.: Dynamical effects of the cosmological constant. Mon. Not. R. Astron. Soc. 251, 128 (1991)

    Article  ADS  Google Scholar 

  23. Lacey, C., Cole, S.: Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc. 262, 627 (1993)

    Article  ADS  Google Scholar 

  24. Eke, V.R., Cole, S., Frenk, C.S.: Cluster evolution as a diagnostic for Omega. Mon. Not. R. Astron. Soc. 282, 263 (1996)

    Article  ADS  Google Scholar 

  25. Wang, L.M., Steinhardt, P.J.: Cluster abundance constraints for cosmological models with a time-varying, spatially inhomogeneous energy component with negative pressure. Astrophys. J. 508, 483 (1998)

    Article  ADS  Google Scholar 

  26. Cooray, A., Sheth, R.: Halo models of large scale structure. Phys. Rep. 372, 1 (2002)

    Article  ADS  MATH  Google Scholar 

  27. Weller, J., Battye, R., Kneissl, R.: Constraining dark energy with Sunyaev-Zel’dovich cluster surveys. Phys. Rev. Lett. 88, 231301 (2002)

    Article  ADS  Google Scholar 

  28. Battye, R.A., Weller, J.: Constraining cosmological parameters using Sunyaev-Zel’dovich cluster surveys. Phys. Rev. D 68, 083506 (2003)

    Article  ADS  Google Scholar 

  29. Kulinich, Yu., Novosyadlyj, B.: Spherical collapse and mass function of rich clusters in models with curvature and cosmological constant. J. Phys. Stud. 7, 234 (2003)

    Google Scholar 

  30. Weinberg, N., Kamionkowski, M.: Constraining dark energy from the abundance of weak gravitational lenses. Mon. Not. R. Astron. Soc. 341, 251 (2003)

    Article  ADS  Google Scholar 

  31. Shaw, D.J., Mota, D.F.: An improved semi-analytical spherical collapse model for non-linear density evolution. Astrophys. J. Suppl. Ser. 174, 277 (2008)

    Article  ADS  Google Scholar 

  32. Yu, Kulinich, Novosyadlyj, B., Apunevych, S.: Nonlinear power spectra of dark and luminous matter in the halo model of structure formation. Phys. Rev. D 88, 103505 (2013)

    Article  ADS  Google Scholar 

  33. Kuhlen, M., Vogelsberger, M., Angulo, R.: Numerical simulations of the dark universe: state of the art and the next decade. Phys. Dark Univ. 1, 50 (2012)

    Article  Google Scholar 

  34. Baldi, M.: Dark Energy Simulations. Phys. Dark Univ. 1, 162 (2012)

    Article  Google Scholar 

  35. Mota, D., van de Bruck, C.: On the spherical collapse model in dark energy cosmologies. Astron. Astrophys. 421, 71–81 (2004)

    Article  ADS  MATH  Google Scholar 

  36. Maor, I., Lahav, O.: On virialization with dark energy. J. Cosmol. Astropart. Phys. 07, 003 (2005)

    Article  ADS  Google Scholar 

  37. Manera, M., Mota, D.F.: Cluster number counts dependence on dark energy inhomogeneities and coupling to dark matter. Mon. Not. Roy. Astron. Soc. 371, 1373 (2006)

    Article  ADS  Google Scholar 

  38. Nunes, N.J., Mota, D.F.: Structure formation in inhomogeneous dark energy models. Mon. Not. Roy. Astron. Soc. 368, 751 (2006)

    Article  ADS  Google Scholar 

  39. Creminelli, P., D’Amico, G., Norena, J., Senatore, L., Vernizzi, F.: Spherical collapse in quintessence models with zero speed of sound. J. Cosmol. Astropart. Phys. 03, 027 (2010)

    Article  ADS  Google Scholar 

  40. Lim, E.A., Sawicki, I., Vikman, A.: Dust of dark energy. J. Cosmol. Astropart. Phys. 05, 012 (2010)

    Article  ADS  Google Scholar 

  41. Wang, Q., Fan, Z.: Simulation studies of dark energy clustering induced by the formation of dark matter halos. Phys. Rev. D 85, 023002 (2012)

  42. Bardeen, J.M.: Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882–1905 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  43. Padmanabhan, T.: Theoretical Astrophysics, Volume III: Galaxies and Cosmology. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  44. Silk, J.: Cosmic black-body radiation and galaxy formation. Astrophys. J. 151, 459 (1968)

    Article  ADS  Google Scholar 

  45. Bond, J.R., Szalay, A.S.: The collisionless damping of density fluctuations in an expanding universe. Astrophys. J. 274, 443 (1983)

    Article  ADS  Google Scholar 

  46. Tsizh, M., Novosyadlyj, B.: Dynamics of dark energy in collapsing halo of dark matter. Adv. Astron. Sp. Sci. 5, 51–56 (2015)

    Google Scholar 

  47. Durrer, R.: The Cosmic Microwave Background. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  48. Leistedt, B., Rassat, A., Refregier, A., Starck, J.-L.: 3DEX: fast fourier-bessel decomposition of spherical 3D surveys, astrophysics source code Library, record ascl:1111.011; arXiv:1111.3591v3

  49. Novosyadlyj, B.: The large scale structure of the Universe: theory and observations. J. Phys. Stud. 11, 226 (2007)

    Google Scholar 

  50. http://www.cs.toronto.edu/NA/dverk.f.gz

  51. Hnatyk, B.I., Lukash, V.N., Novosyadlyj, B.S.: Great attractor-like fluctuations: observational manifestations and theoretical constraints. Astron. Astrophys. 300, 1–12 (1995)

    ADS  Google Scholar 

  52. Planck Collaboration, Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582

  53. Lewis, A., Challinor, A., Lasenby, A.: Efficient computation of cosmic microwave background anisotropies in closed Friedmann-Robertson-Walker models. Astrophys. J. 538, 473 (2000)

    Article  ADS  Google Scholar 

  54. Bardeen, J.M., Bond, J.R., Kaiser, N., Szalay, A.S.: The statistics of peaks of Gaussian random fields. Astrophys. J. 304, 15 (1986)

    Article  ADS  Google Scholar 

  55. Novosyadlyj, B., Kulinich, Yu., Tsizh, M.: Dynamics of dark energy in the gravitational fields of matter inhomogeneities. Phys. Rev. D 90, 063004 (2014)

    Article  ADS  Google Scholar 

  56. Tsizh, M., Novosyadlyj, B., Kulinich, Yu.: Distribution of dark energy in the vicinity of compact objects. In: WDS’14 Proceedings of contributed papers—physics, pp. 21–25. (2014)

  57. Mehrabi, A., Basilakos, S., Pace, F.: How clustering dark energy affects matter perturbations, arXiv:1504.01262 (2015)

  58. Tully, R.B., Courtois, H., Hoffman, Y., Pomarede, D.: The Laniakea supercluster of galaxies. Nature 513, 71 (2014)

    Article  ADS  Google Scholar 

  59. Hu, W.: Structure formation with generalized dark matter. Astrophys. J. 506, 485 (1998)

    Article  ADS  Google Scholar 

  60. Hu, W.: Covariant linear perturbation formalism, [arXiv:astro-ph/0402060]

  61. Gordon, C., Hu, W.: A Low CMB quadrupole from dark energy isocurvature perturbations. Phys. Rev. D 70, 083003 (2004)

    Article  ADS  Google Scholar 

  62. Unnikrishnan, S.: Can cosmological observations uniquely determine the nature of dark energy? Phys. Rev. D 78, 063007 (2008)

  63. Abramo, L.R., Batista, R.C., Liberato, L., Rosenfeld, R.: Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenarios. Phys. Rev. D 79, 023516 (2009)

    Article  ADS  Google Scholar 

  64. Amendola, L.: Linear and nonlinear perturbations in dark energy models. Phys. Rev. D 69, 103524 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects of Ministry of Education and Science of Ukraine with State Registration Numbers 0113U003059 and 0115U003279. Authors are thankful to prof. Mykola Bokalo and prof. Volodymyr Kyrylych for useful discussion on mathematical aspect of the problem and Dr. Olga Sergienko for technical help in computations. Authors also acknowledge the usage of CAMB and dverk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Novosyadlyj.

Appendices

Appendix 1: Non-adiabatic part of pressure perturbation in scalar field dark energy

The non-adiabatic part of pressure perturbation in scalar field dark energy is caused by intrinsic entropy perturbation \(\varGamma \) and is equal:

$$\begin{aligned} \delta p_{de}^{n-ad}\equiv p_{de}\varGamma =\delta p_{de}-w\bar{\varepsilon }_{de}\delta _{de}, \end{aligned}$$
(38)

where \(w\equiv p_{de}/\varepsilon _{de}\) and the last term is adiabatic part of pressure perturbation. The entropy perturbation can be expressed via density perturbation \(\hat{\delta }_{de}\) and effective speed of sound \(c_s^2\) in the rest frame as follows

$$\begin{aligned} p_{de}\varGamma =(c_s^2-w)\bar{\varepsilon }_{de}\hat{\delta }_{de}. \end{aligned}$$
(39)

In the rest frame (\(\hat{t},\,\hat{r},\,\hat{\vartheta },\,\hat{\varphi }\)) of dark energy its 4-velocity and density are as follows

$$\begin{aligned} \hat{u}_i=\{e^{\nu /2},\,0,\,0,\,0\}, \quad \hat{\varepsilon }_{de}(\hat{t},\,\hat{r})=\bar{\varepsilon }_{de}(\hat{t})\left[ 1+\hat{\delta }_{de}(\hat{t},\,\hat{r})\right] , \end{aligned}$$
(40)

where \(\nu \) is the same function as in (5) but in the “hat” coordinates. In the conformal Newtonian (CN) frame (\(t,\,r,\,\vartheta ,\,\varphi \)) they are

$$\begin{aligned} u_i=\{u_0,\,u_1,\,0,\,0\}, \quad \varepsilon _{de}(t,r)=\bar{\varepsilon }_{de}(t)[1+\delta _{de}(t,r)] \end{aligned}$$
(41)

where \(u_0\) and \(u_1\) can be expressed as in (6). In the case of small perturbations the coordinates of both frames are connected by simple transformations:

$$\begin{aligned} \hat{t}=t+\xi ^0(t,r), \quad \hat{r}=r+\xi ^1(t,r). \end{aligned}$$
(42)

The density is scalar variable and transforms as \(\bar{\varepsilon }_{de}(\hat{t})=\bar{\varepsilon }_{de}(t)+\dot{\bar{\varepsilon }}_{de}\xi ^0(t,r)\). The density perturbations \(\delta _{de}\) is scalar variable too, but since \(\delta _{de}\ll 1\) the first and next order expansion terms are second and next order of infinitesimality, so, \(\hat{\delta }_{de}(\hat{t},\hat{r})\approx \hat{\delta }_{de}(t,r)\). A dot denotes the partial derivative with respect to time. Taking into account the conservation law for background density

$$\begin{aligned} \dot{\bar{\varepsilon }}_{de}=-3\frac{\dot{a}}{a}(1+w)\bar{\varepsilon }_{de} \end{aligned}$$
(43)

we obtain the relation

$$\begin{aligned} \hat{\delta }_{de}(t,r)=\delta _{de}(t,r)+3\frac{\dot{a}}{a}(1+w)\xi ^0(t,r). \end{aligned}$$
(44)

The unknown function \(\xi ^0(t,r)\) can be found from velocity transformation

$$\begin{aligned} u_1=\frac{\partial {\hat{t}}}{\partial {r}}\hat{u}_0+\frac{\partial {\hat{r}}}{\partial {r}}\hat{u}_1. \end{aligned}$$
(45)

Taking into account (40), (41) and (6), we obtain

$$\begin{aligned} \xi ^0(t,r)=-a\int {e^{(\mu -\nu )/2}\frac{v_{de}}{\sqrt{1-v^2_{de}}}\mathrm{d}r}. \end{aligned}$$
(46)

Here we suppose also \(\nu (\hat{t},\hat{r})=\nu (t,r)\), \(\mu (\hat{t},\hat{r})=\mu (t,r)\) since they are small. For inhomogeneities of galaxies and clusters of galaxies scales \(\nu \ll 1\), \(\mu \ll 1\) and \(v_{de}\ll 1\), so, the squared term \(v^2_{de}\) in the denominator and exponent can be omitted, so

$$\begin{aligned} \hat{\delta }_{de}(t,r)=\delta _{de}(t,r)-3\dot{a}(1+w)\int {v_{de}\mathrm{d}r}. \end{aligned}$$
(47)

Gathering all together (38), (39) and (47) we find

$$\begin{aligned} \delta p_{de}=\bar{\varepsilon }_{de}\left[ c_s^2\delta _{de}-3\dot{a}(1+w)(c_s^2-w)\int {v_{de}\mathrm{d}r}\right] . \end{aligned}$$
(48)

Other approaches and details of deducing of the non-adiabatic part of pressure perturbation of scalar field can be found in [5962]. The contribution of non-adiabatic part of pressure perturbation last term in (48), fifth term in (18) and fourth term in (31) is important at superhorizon linear stage and practically disappears when perturbation enters into horizon. That is why we do not generalized this term for the non-linear stage.

At last we would like to note here, that some researchers use the term “effective sound speed of dark energy” as speed of propagation of perturbation in any frame (see, for example, [63]). It is related with our \(c^2_s\) by simple equation \(c^2_{eff}=c_s^2-3\dot{a}(1+w)(c_s^2-w)\tilde{v}_{de}/\tilde{\delta }_{de}.\) Therefore, \(c^2_{eff}\) is variable for constant \(c^2_s\).

Appendix 2: Linearized system of differential equations for evolution of perturbations in three-component medium

The system of ordinary differential equations which describes the evolution of Fourier amplitudes of cosmological linear perturbations of metric, densities and velocities of three-component zero-shear medium in the conformal-Newtonian gauge is as follows

$$\begin{aligned}&\dot{\tilde{\delta }}_\mathrm{r}-2\dot{\tilde{\nu }}-\frac{4k^2}{3a^2H}\tilde{v}_\mathrm{r}=0,\quad \dot{\tilde{v}}_\mathrm{r}+\frac{\tilde{\nu }}{2a^2H}+\frac{\tilde{\delta }_\mathrm{r}}{4a^2H}=0, \end{aligned}$$
(49)
$$\begin{aligned}&\dot{\tilde{\delta }}_{m}-\frac{3}{2}\dot{\tilde{\nu }}-\frac{k^2}{a^2H}\tilde{v}_{m}=0,\quad \dot{\tilde{v}}_{m}+\frac{\tilde{v}_{m}}{a}+\frac{\tilde{\nu }}{2a^2H}=0, \end{aligned}$$
(50)
$$\begin{aligned}&\dot{\tilde{\delta }}_{de}+\frac{3}{a}(c_s^2-w)\tilde{\delta }_{de}-(1+w)\left[ \frac{k^2}{a^2H}\tilde{v}_{de} +9H(c_s^2-w)\tilde{v}_{de}+\frac{3}{2}\dot{\tilde{\nu }}\right] =0, \end{aligned}$$
(51)
$$\begin{aligned}&\dot{\tilde{v}}_{de}+(1-3c_s^2)\frac{\tilde{v}_{de}}{a}+\frac{c_s^2\tilde{\delta }_{de}}{a^2H(1+w)}+\frac{\tilde{\nu }}{2a^2H}=0, \end{aligned}$$
(52)
$$\begin{aligned}&\dot{\tilde{\nu }}+\left( 1+\frac{k^2}{3a^2H^2}\right) \frac{\tilde{\nu }}{a}= -\frac{H^2_0}{H^2}\left( \varOmega _ma^{-3}\tilde{\delta }_m+ \varOmega _\mathrm{r}a^{-4}\tilde{\delta }_\mathrm{r}+\varOmega _{de}a^{-3(1+w)}\tilde{\delta }_{de}\right) .\qquad \quad \end{aligned}$$
(53)

The system has well known analytical solutions for two special cases—radiation-dominated epoch (\(\varOmega _\mathrm{r}=1\), \(\varOmega _m=\varOmega _{de}=0\)) and matter-dominated one (\(\varOmega _{m}=1\), \(\varOmega _\mathrm{r}=\varOmega _{de}=0\)). For two or three component case it can be solved numerically for given initial conditions, for which we have designed the FORTRAN code dedmhalo-l.f.

Fig. 6
figure 6

Evolution of density perturbations of matter and dark energy (transformed to synchronous gauge) obtained by integration of system of Eqs. (49)–(53) by our code dedmhalo.f (solid black lines), and the same obtained by integration of Boltzman-Eistein code CAMB in synchronous gauge (dashed blue lines)

The results of numerical integration of this system of equations with initial conditions (25)–(27) are presented in the Figs. 1 and 4 by dotted lines. Here in Fig. 6 we present the evolution of density perturbations of dark matter and dark energy obtained by integration of system of Eqs. (49)–(53) by our code dedmhalo-l.f and transformed to synchronous gauge according to known relation \(D_N=\tilde{\delta }_N-3(1+w_N)v_N\) [42]. The evolution of \(D_m\) and \(D_{de}\) obtained by integration of system of Boltzman-Eistein equations in synchronous gauge by code CAMB [53] is also presented there. This illustrates well agreement of results obtained in the different approaches and by different codes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novosyadlyj, B., Tsizh, M. & Kulinich, Y. Dynamics of minimally coupled dark energy in spherical halos of dark matter. Gen Relativ Gravit 48, 30 (2016). https://doi.org/10.1007/s10714-016-2031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2031-8

Keywords

Navigation