Skip to main content
Log in

On a renormalization group scheme for causal dynamical triangulations

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The causal dynamical triangulations approach aims to construct a quantum theory of gravity as the continuum limit of a lattice-regularized model of dynamical geometry. A renormalization group scheme—in concert with finite size scaling analysis—is essential to this aim. Formulating and implementing such a scheme in the present context raises novel and notable conceptual and technical problems. I explored these problems, and, building on standard techniques, suggested potential solutions in a previous paper (Cooperman, arXiv:gr-qc/1410.0026). As an application of these solutions, I now propose a renormalization group scheme for causal dynamical triangulations. This scheme differs significantly from that studied recently by Ambjørn, Görlich, Jurkiewicz, Kreienbuehl, and Loll.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Whenever I refer to a scale, I always refer to a length scale.

  2. This is what it means for a quantity to be dimensionful: one requires a standard unit of measure to ascertain its value.

  3. I choose to display factors of \(\hbar \), but I treat \(\hbar \) as having the value unity.

  4. See [12, 13] for the original formulation and [8] for a comprehensive review.

  5. Numerical measurements of \(\langle d_{\mathfrak {s}}(\sigma )\rangle \) interpreted within the model of Sect. 3.3 do not alone determine the scale \(\ell _{\mathrm {dS}}\) in units of the lattice spacing a.

  6. Technically, a standard Wick rotation of the action (2.7) yields an overall negative sign, giving a kinetic term of the wrong sign. This is the well-known unboundedness from below of the conformal mode of the metric tensor \(\mathbf {g}\). Evidently, the effective action describing the ensemble average quantum geometry of phase C on sufficiently large scales does not have this overall negative sign [15, 16].

  7. One might wonder why Benedetti and Henson chose to fit the spectral dimension of the stretched sphere, not that of Euclidean de Sitter space, to \(\langle d_{\mathfrak {s}}(\sigma )\rangle \). Their motivation was twofold: first, they pointed out that the random walker probes the quantum geometry more generally than does the observable \(N_{2}^{\mathrm {SL}}(\tau )\), and, second, they were interested in possibly finding evidence for a Hořava-Lifshitz-like continuum limit as suggested in [4]. The stretched sphere is not a solution of the Einstein equations except for \(g_{tt}=1\) but is a solution of the Hořava-Lifshitz equations. This second point suggests that their use of the finite size scaling Ansatz (3.12) is not necessarily compatible with their choice of the line element (3.42) since the finite size scaling Ansatz assumes isotropic scaling.

  8. One might wonder why I have not developed a coarse graining procedure for the implementation of a renormalization group transformation, especially since this is the standard technique applied to lattice-regularized quantum theories of fields. My motivation is two-fold. First, the coarse graining procedures developed by Johnston, Kownacki, and Krzywicki [34] and by Catterall, Renken, and Thorleifsson [39, 40, 43] for Euclidean dynamical triangulations and even the coarse graining procedure developed by Henson [31] for causal dynamical triangulations are in fact not well-suited to causal dynamical triangulations: the triangulation obtained after just a single iteration of the procedure is no longer necessarily a causal triangulation. (Indeed, the output of Henson’s coarse graining procedure might not even be a simplicial manifold.) Since subsequent iterations do not begin with a causal triangulation, the relevance of their outcomes is in doubt. Second, reasoning from the general expectations of Sect. 4.1, a coarse graining procedure for causal dynamical triangulations should function to reduce simultaneously the number \(N_{d+1}\) of \((d+1)\)-simplices and the number T of time slices while preserving the causal nature of the triangulation. Undoubtedly, one could design such a coarse graining procedure. Its relevance for ensembles of causal triangulations that one can currently simulate is likely quite limited: owing to the relatively small values of \(T_{\mathrm {ph}}\) obtained, very few iterations of the coarse graining procedure could be implemented. The method for implementation of renormalization group transformations that I have proposed should allow for much more incremental iterations.

References

  1. Ambjørn, J., Coumbe, D. N., Gizbert-Studnicki, J., Jurkiewicz, J.: Signature change of the metric in CDT quantum gravity? arXiv:1503.08580

  2. Ambjørn, J., Gizbert-Studnicki, J., Görlich, A., Jurkiewicz, J.: The transfer-matrix in four-dimensional CDT. J. High Energy Phys. 12, 17 (2012)

    Article  Google Scholar 

  3. Ambjørn, J., Gizbert-Studnicki, J., Görlich, A., Jurkiewicz, J.: The effective action in \(4\)-dim CDT: the transfer matrix approach. J. High Energy Phys. 06, 34 (2014)

    Article  ADS  Google Scholar 

  4. Ambjørn, J., Görlich, A., Jordan, S., Jurkiewicz, J., Loll, R.: CDT meets Hořava-Lifshitz gravity. Phys. Lett. B 690, 413 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ambjørn, J., Görlich, A., Jurkiewicz, J., Kreienbuehl, A., Loll, R.: Renormalization group flow in CDT. Class. Quantum Gravity 31, 165003 (2014)

    Article  ADS  MATH  Google Scholar 

  6. Ambjørn, J., Görlich, A., Jurkiewicz, J., Loll, R.: Planckian birth of a quantum de sitter universe. Phys. Rev. Lett. 100, 091304 (2008)

    Article  ADS  Google Scholar 

  7. Ambjørn, J., Görlich, A., Jurkiewicz, J., Loll, R.: Nonperturbative quantum de Sitter universe. Phys. Rev. D 78, 063544 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ambjørn, J., Görlich, A., Jurkiewicz, J., Loll, R.: Nonperturbative quantum gravity. Phys. Rep. 519, 127 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ambjørn, J., Görlich, A., Jurkiewicz, J., Loll, R., Gizbert-Studnicki, J., Trześniewski, T.: The semiclassical limit of causal dynamical triangulations. Nucl. Phys. B 849, 144 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Ambjørn, J., Jordan, S., Jurkiewicz, J., Loll, R.: Second-order phase transition in causal dynamical triangulations. Phys. Rev. Lett. 107, 211303 (2011)

    Article  ADS  Google Scholar 

  11. Ambjørn, J., Jordan, S., Jurkiewicz, J., Loll, R.: Second- and first-order phase transitions in causal dynamical triangulations. Phys. Rev. D 85, 124044 (2012)

    Article  ADS  Google Scholar 

  12. Ambjørn, J., Jurkiewicz, J., Loll, R.: Non-perturbative lorentzian path integral for gravity. Phys. Rev. Lett. 85, 347 (2000)

    Article  MATH  Google Scholar 

  13. Ambjørn, J., Jurkiewicz, J., Loll, R.: Dynamically triangulating Lorentzian quantum gravity. Nucl. Phys. B 610, 347 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Ambjørn, J., Jurkiewicz, J., Loll, R.: Emergence of a 4D world from causal dynamical triangulations. Phys. Rev. Lett. 93, 131301 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ambjørn, J., Jurkiewicz, J., Loll, R.: Semiclassical universe from first principles. Phys. Lett. B 607, 205 (2005)

    Article  ADS  MATH  Google Scholar 

  16. Ambjørn, J., Jurkiewicz, J., Loll, R.: Reconstructing the universe. Phys. Rev. D 72, 064014 (2005)

    Article  ADS  Google Scholar 

  17. Ambjørn, J., Jurkiewicz, J., Loll, R.: The spectral dimension of the universe is scale dependent. Phys. Rev. Lett. 95, 171301 (2005)

    Article  ADS  Google Scholar 

  18. Anderson, C., Carlip, S.J., Cooperman, J.H., Hořava, P., Kommu, R.K., Zulkowski, P.R.: Quantizing Hořava-Lifshitz gravity via causal dynamical triangulations. Phys. Rev. D 85, 044027 (2012)

    Article  ADS  Google Scholar 

  19. Benedetti, D., Henson, J.: Spectral geometry as a probe of quantum spacetime. Phys. Rev. D 80, 124036 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Calcagni, G.: Diffusion in quantum geometry. Phys. Rev. D 86, 044021 (2012)

    Article  ADS  Google Scholar 

  21. Calcagni, G.: Diffusion in multiscale spacetimes. Phys. Rev. E 87, 012123 (2013)

    Article  ADS  Google Scholar 

  22. Calcagni, G.: Multifractional spacetimes, asymptotic safety, and Hořava-Lifshitz gravity. Int. J. Mod. Phys. A 28, 1350092 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Calcagni, G., Eichhorn, A., Saueressig, F.: Probing the quantum nature of spacetime by diffusion. Phys. Rev. D 87, 124028 (2013)

    Article  ADS  Google Scholar 

  24. Calcagni, G., Nardelli, G.: Spectral dimension and diffusion in multiscale spacetimes. Phys. Rev. D 88, 124025 (2013)

    Article  ADS  Google Scholar 

  25. Carlip, S.: The Small Scale Structure of Spacetime. Foundations of Space and Time. Eds. G. Ellis, J. Murugan, and A. Weltman. Cambridge University Press, Cambridge (2010)

  26. Cooperman, J. H.: Renormalization of lattice-regularized quantum gravity models I. General considerations. arXiv:1410.0026

  27. Cooperman, J.H., Miller, J.M.: Setting the scale of dynamical dimensional reduction in causal dynamical triangulations. In preparation

  28. Cooperman, J.H., Miller, J.M.: A first look at transition amplitudes in \((2+1)\)-dimensional causal dynamical triangulations. Class. Quantum Gravity 31, 035012 (2014)

    Article  ADS  MATH  Google Scholar 

  29. Coumbe, D.N., Jurkiewicz, J.: Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations. J. High Energy Phys. 03, 151 (2015)

    Article  MathSciNet  Google Scholar 

  30. Coumbe, D.N., Gizbert-Studnicki, J. Jurkiewicz, J.: Exploring the new phase of CDT. arXiv:1510.08672

  31. Henson, J.: Coarse graining dynamical triangulations: a new scheme. Class. Quantum Gravity 26, 175019 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Hořava, P.: Spectral dimension of the universe in quantum gravity at a lifshitz point. Phys. Rev. Lett. 102, 161301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  34. Johnston, D.A., Kownacki, J.P., Krzywicki, A.: Random geometries and real space renormalization group. Nuclear Phys. B Proc Suppl. 42, 728 (1995)

    Article  ADS  Google Scholar 

  35. Kommu, R.K.: A validation of causal dynamical triangulations. Class. Quantum Gravity 29, 105003 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Lauscher, O., Reuter, M.: Fractal spacetime structure in asymptotically safe gravity. J. High Energy Phys. 0510, 050 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. Niedermaier, M., Reuter, M.: The asymptotic safety scenario in quantum gravity. Living Rev. Relativ. 9, 5 (2006)

    ADS  MATH  Google Scholar 

  38. Rechenberger, S., Saueressig, F.: \(R^{2}\) phase diagram of quantum Einstein gravity and its spectral dimension. Phys. Rev. D 86, 024018 (2012)

    Article  ADS  Google Scholar 

  39. Renken, R.L.: Block spin renormalization group approach and two-dimensional quantum gravity. Phys. Rev. D 50, 5130 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  40. Renken, R.L.: A renormalization group for dynamical triangulations in arbitrary dimensions. Nucl. Phys. B 485, 503 (1997)

    Article  ADS  Google Scholar 

  41. Reuter, M., Saueressig, F.: Fractal spacetimes under the microscope: A renormalization group view on Monte Carlo data. J. High Energy Phys. 12, 012 (2011)

    Article  ADS  MATH  Google Scholar 

  42. Sotiriou, T., Visser, M., Weinfurtner, S.: Spectral dimension as a probe of the ultraviolet continuum regime of causal dynamical triangulations. Phys. Rev. Lett. 107, 131303 (2011)

    Article  ADS  Google Scholar 

  43. Thorleifsson, G., Catterall, S.: A real space renormalization group for random surfaces. Nucl. Phys. B 461, 350 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I wish to thank Jan Ambjørn, Steven Carlip, and Renate Loll for several useful conversations. I also wish to thank Renate Loll for comments on a draft of this paper. I acknowledge support from the Foundation for Fundamental Research on Matter itself supported by the Netherlands Organization for Scientific Research. This research was supported in part by the Perimeter Institute for Theoretical Physics. Research at the Perimeter Institute is supported by the Government of Canada through Industry Cananda and by the Province of Ontario through the Ministry of Economic Development and Innovation. This research was also supported in part by the United States Department of Energy under grant DE-FG02-91ER40674 at the University of California, Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua H. Cooperman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooperman, J.H. On a renormalization group scheme for causal dynamical triangulations. Gen Relativ Gravit 48, 29 (2016). https://doi.org/10.1007/s10714-016-2027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2027-4

Keywords

Navigation