Skip to main content
Log in

Cosmological evolution of the gravitational entropy of the large-scale structure

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider the entropy associated with the large-scale structure of the Universe in the linear regime, where the Universe can be described by a perturbed Friedmann–Lemaître spacetime. In particular, we compare two different definitions proposed in the literature for the entropy using a spatial averaging prescription. For one definition, the entropy of the large-scale structure for a given comoving volume always grows with time, both for a CDM and a \(\Lambda \)CDM model. In particular, while it diverges for a CDM model, it saturates to a constant value in the presence of a cosmological constant. The use of a light-cone averaging prescription in the context of the evaluation of the entropy is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We add a factor \(1/M_{Pl}\) with respect to the definition proposed in [22] to obtain a dimensionless relative information entropy.

  2. In general \(n_\mu \), which defines a general reference flow, and \(u_\mu \), which defines the four-velocity of the observers comoving with the matter, may be different (see Ref. [30] for details).

  3. The definition of gauge invariant degrees of freedom are summarized in “Appendix 2”.

  4. In the following we consider the spatial averaging prescription \(<....>_{\mathcal {D}}\) in our definition, we will show in Sect. 4 that this is indeed the right averaging prescription for the evaluation of the entropy.

  5. See Ref. [3739] for the case of cosmological observables, such as the second order luminosity distance/redshift relation [4042], where the application of the light-cone averaging prescription is necessary.

References

  1. Peter, P., Uzan, J.-P.: Primordial Cosmology. Oxford University Press, England (2009)

    Google Scholar 

  2. Buchert, T.: Gen. Relativ. Gravit. 32, 105 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Buchert, T.: Gen. Relativ. Gravit. 33, 1381 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Zalaletdinov, R.M.: Bull. Astron. Soc. India 25, 401 (1997)

    ADS  Google Scholar 

  5. Paranjape, A., Singh, T.P.: Phys. Rev. D 76, 044006 (2007)

    Article  ADS  Google Scholar 

  6. Buchert, T., Räsänen, S.: Ann. Rev. Nucl. Sci. 62, 57 (2012)

    Article  ADS  Google Scholar 

  7. Clarkson, C., Ellis, G., Larena, J., Umeh, O.: Rep. Prog. Phys. 74, 112901 (2011)

    Article  MathSciNet  Google Scholar 

  8. Räsänen, S.: Class. Quantum Gravity 28, 164008 (2011)

    Article  Google Scholar 

  9. Ellis, G.F.R.: Class. Quantum Gravity 28, 164001 (2011)

    Article  ADS  Google Scholar 

  10. Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: JCAP 1107, 008 (2011)

    Article  ADS  Google Scholar 

  11. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  12. Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975), [Erratum-ibid. 46, 206 (1976)]

  14. Wald, R.M.: Phys. Rev. D 48, 3427 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  15. Penrose, R.: In: Hawking, S.W., Israel, W. (eds.) General Relativity, an Einstein Centenary Survey, p. 581. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  16. Penrose, R.: Conf. Proc. C 060626, 2759 (2006)

    Google Scholar 

  17. Clifton, T., Ellis, G.F.R., Tavakol, R.: Class. Quantum Gravity 30, 125009 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  18. Kullback, S., Leibler, R.A.: Ann. Math. Stat. 22, 79 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kunz, M., Aghanim, N., Cayon, L., Forni, O., Riazuelo, A., Uzan, J.P.: Phys. Rev. D 73, 023511 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. Trotta, R.: Contemp. Phys. 49, 71 (2008)

    Article  ADS  Google Scholar 

  21. Fabre, O., Prunet, S., Uzan, J.-P.: [ arXiv:1311.3509]

  22. Hosoya, A., Buchert, T., Morita, M.: Phys. Rev. Lett. 92, 141302 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  23. Li, N., Buchert, T., Hosoya, A., Morita, M., Schwarz, D.J.: Phys. Rev. D 86, 083539 (2012)

    Article  ADS  Google Scholar 

  24. Morita, M., Buchert, T., Hosoya, A., Li, N.: AIP Conf. Proc. 1241, 1074 (2010)

    Article  ADS  Google Scholar 

  25. Akerblom, N., Cornelissen, G.: J. Math. Phys. 53, 012502 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  26. Bolejko, K., Stoeger, W.R.: Phys. Rev. D 88(6), 063529 (2013)

    Article  ADS  Google Scholar 

  27. Sussman, R.A., Larena, J.: Class. Quantum Gravity 31, 075021 (2014)

    Article  ADS  Google Scholar 

  28. Marozzi, G., Uzan, J.-P.: Phys. Rev. D 86, 063528 (2012)

    Article  ADS  Google Scholar 

  29. Gourgoulhon, E.: \(1+3\) Formalism in General Relativity, Lecture Notes in Physics, vol. 846. Springer (2012)

  30. Gasperini, M., Marozzi, G., Veneziano, G.: JCAP 02, 009 (2010)

    Article  ADS  Google Scholar 

  31. Gasperini, M., Marozzi, G., Veneziano, G.: JCAP 03, 011 (2009)

    Article  ADS  Google Scholar 

  32. Marozzi, G.: JCAP 01, 012 (2011)

    Article  ADS  Google Scholar 

  33. Pelavas, N., Lake, K.: Phys. Rev. D 62, 044009 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  34. Pelavas, N., Coley, A.: Int. J. Theor. Phys. 45, 1258 (2006)

    Article  MathSciNet  Google Scholar 

  35. Ben-Dayan, I., Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: JCAP 04, 036 (2012)

    Article  ADS  Google Scholar 

  36. Clarkson, C., Ananda, K., Larena, J.: Phys. Rev. D 80, 083525 (2009)

    Article  ADS  Google Scholar 

  37. Ben-Dayan, I., Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: Phys. Rev. Lett. 110, 021301 (2013)

    Article  ADS  Google Scholar 

  38. Ben-Dayan, I., Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: JCAP 06, 002 (2013)

    Article  ADS  Google Scholar 

  39. Ben-Dayan, I., Durrer, R., Marozzi, G., Schwarz, D.J.: Phys. Rev. Lett. 112, 221301 (2014)

    Article  ADS  Google Scholar 

  40. Ben-Dayan, I., Marozzi, G., Nugier, F., Veneziano, G.: JCAP 11, 045 (2012)

    Article  ADS  Google Scholar 

  41. Fanizza, G., Gasperini, M., Marozzi, G., Veneziano, G.: JCAP 11, 019 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  42. Marozzi, G.: Class. Quantum Gravity 32, 045004 (2015)

    Article  ADS  Google Scholar 

  43. Eisenstein, D.J., Hu, W.: Astrophys. J. 496, 605 (1998)

    Article  ADS  Google Scholar 

  44. Ade, P.A.R., et al.: [Planck Collaboration]. Astron. Astrophys. 571, A16 (2014)

  45. Smith, R.E., et al.: [Virgo Consortium Collaboration]. Mon. Not. R. Astron. Soc. 341, 1311 (2003)

  46. Takahashi, R., Sato, M., Nishimichi, T., Taruya, A., Oguri, M.: Astrophys. J. 761, 152 (2012)

    Article  ADS  Google Scholar 

  47. Sussman, R.A., Larena, J.: Class. Quantum Gravity 32, 165012 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We wish to thank Julien Larena for useful discussions. GM was partially supported by the Marie Curie IEF, Project NeBRiC - “Non-linear effects and backreaction in classical and quantum cosmology”. The work of JPU made in the ILP LABEX (under reference ANR-10-LABX-63) was supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02 and by the ANR VACOUL, ANR-10-BLAN-0510. OU is supported by the South African Square Kilometre Array (SKA) project and CC is supported by the South African National Research Foundation (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Marozzi.

Appendices

Appendix 1: Dynamics of the background spacetime

We assume that the background spacetime is well-described by a spatially Euclidean Friedmann–Lemaître universe with the late time dynamics dictated only by pressureless matter and cosmological constant with density parameters

$$\begin{aligned} \Omega _\mathrm{m0} = \frac{8\pi G\rho _\mathrm{m0}}{3H_0},\qquad \Omega _{\Lambda 0} = \frac{\Lambda }{3H_0} \end{aligned}$$
(38)

that satisfy \(\Omega _\mathrm{m0}+ \Omega _{\Lambda 0}=1\). The Friedmann equation then takes the usual form

$$\begin{aligned} \frac{H^2(z)}{H_0^2} = \Omega _\mathrm{m0}(1+z)^3 + \Omega _{\Lambda 0}\,, \end{aligned}$$
(39)

and, using the proper time t, its solution is given by

$$\begin{aligned} a(t) \propto \sinh ^{2/3}\left( \frac{3}{2}\sqrt{\Omega _{\Lambda 0}} H_0t \right) . \end{aligned}$$
(40)

The normalization to the Hubble constant today, \(H_0\), implies that

$$\begin{aligned} \sinh \left( \frac{3}{2}\sqrt{\Omega _{\Lambda 0}} H_0t_0 \right) = \frac{\Omega _{\Lambda 0}^{1/2}}{(1-\Omega _{\Lambda 0})^{1/2}}\equiv \kappa _0^{3/2} \end{aligned}$$
(41)

so that the redshift is given by

$$\begin{aligned} 1+z =\frac{\kappa _0}{\sinh ^{2/3}\left( \frac{3}{2}\sqrt{\Omega _{\Lambda 0}} H_0t \right) }. \end{aligned}$$
(42)

Appendix 2: Linear perturbation theory

The evolution of the degrees of freedom of the metric (13) can be found in many textbooks, e.g. Ref. [1].

It can first be shown that there is only six gauge invariant degrees of freedom usually defined as

$$\begin{aligned} \Psi\equiv & {} \psi +\frac{1}{2} \Delta E+\frac{\mathcal {H}}{2}(\beta +E'), \end{aligned}$$
(43)
$$\begin{aligned} \Phi\equiv & {} \alpha -\frac{\mathcal {H}}{2}(\beta +E')-\frac{1}{2}(\beta +E')', \end{aligned}$$
(44)
$$\begin{aligned} \bar{\Phi }^i\equiv & {} \frac{1}{2}\bar{\chi }^{i'}+\frac{1}{2}\bar{B}^{i},\,\,\,\,\,\,\, \bar{h}^{i j} , \end{aligned}$$
(45)

where the prime denotes the derivative with respect to conformal time and \({\mathcal {H}}=a'/a\).

Considering a matter sector described by a perfect fluid with stress-energy tensor

$$\begin{aligned} T_{\mu \nu }=(\rho +P)u_\mu u_\nu +P g_{\mu \nu }, \end{aligned}$$
(46)

where the density and pressure can be split as \(\rho (\eta , {\varvec{x}})=\rho ^{(0)}(\eta )+\rho ^{(1)} (\eta , {\varvec{x}})\) and \(P(\eta , {\varvec{x}})=P^{(0)}(\eta )+P^{(1)} (\eta , {\varvec{x}})\), and the velocity of the comoving observers is decomposed as \(u^\mu =\bar{u}^\mu +\delta u^\mu \) with \(u_\mu u^\mu =-1\). It follows that

$$\begin{aligned} u^\mu =a^{-1}(1-\alpha , v^i),\,\,\,u_\mu =a (-1-\alpha , v_i-1/2 B_i)\, \end{aligned}$$
(47)

and we decompose \(v_i\) into scalar and a vector component according to

$$\begin{aligned} v_i=\partial _i v+\bar{v}_i\,. \end{aligned}$$
(48)

The scalar shear, given in Eq. (10), is by construction a second order quantity so that

$$\begin{aligned} (\sigma ^2)^{(0)}= (\sigma ^2)^{(1)}=0. \end{aligned}$$
(49)

Thus, at the lowest order and for a general metric, we have

$$\begin{aligned} (\sigma ^2)^{(2)}= & {} \frac{1}{2 a^2 {S'}^{2}}\left[ \delta S_{,i j} \delta S^{,i j}-\frac{1}{3}(\nabla ^2 \delta S)^2 \right] \nonumber \\&+\frac{1}{8 a^2}\left[ B_{i, j} B^{i, j}-\frac{1}{3}(\partial ^i B_i)^2 \right] \nonumber \\&-\frac{1}{2 a^2 S'}\left[ \delta S_{,i j} B^{i, j}-\frac{1}{3}(\nabla ^2 \delta S) (\partial ^i B_i) \right] \nonumber \\&-\frac{1}{a^2 {S'}} \delta S_{,i j} {\tilde{h}}^{',i j}+\frac{1}{2 a^2} B_{i, j} {\tilde{h}}^{',i j} \nonumber \\&+\frac{1}{2 a^2} {\tilde{h}}_{',i j} {\tilde{h}}^{',i j}\,, \end{aligned}$$
(50)

where \(\tilde{h}_{,i j}=\frac{1}{2}D_{ij} E+\partial _{(i} \bar{\chi }_{j)}+\frac{1}{4}\bar{h}_{i j}\), we use the notation \(X_{,i}\equiv \partial _i X\) for any field X, and \(\delta S\) is the first order perturbation of the scalar \(S(\mathbf{x}, t)\) defining the space-time foliation.

It is clear that first order perturbation theory is sufficient to obtain the general expression for the shear up to second order, since second order perturbations will contribute only to third or fourth order to \(\sigma ^2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marozzi, G., Uzan, JP., Umeh, O. et al. Cosmological evolution of the gravitational entropy of the large-scale structure. Gen Relativ Gravit 47, 114 (2015). https://doi.org/10.1007/s10714-015-1955-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1955-8

Keywords

Navigation